首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work describes the partition of a Schistosoma mansoni tegumental antigen produced by a recombinant Escherichia coli strain using an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) and purified hydroxypropyl-starch (Reppal PES 100). The effects of the polymer molecular weight, tie line length and pH on antigen partitioning were investigated. The detection of the antigen in both phases was determined by ELISA. The system composed of PEG 8000 (5.1% w/w) and Reppal PES 100 (13.0% w/w) led to a yield of 92% and a purification factor of 12 concerning the antigen in the PEG-rich phase. It was observed that antigen partition in ATPSs was strongly affected by the pH and tie line length. In addition, it was possible in a single step, to remove the cell debris, which precipitated at the interface of the system.  相似文献   

2.
The partitioning pattern of bovine trypsinogen (TRPz) and alpha-chymotrypsinogen (ChTRPz) was investigated in a low impact aqueous two-phase system formed by polyethyleneglycol (PEG) and sodium tartrate (NaTart) pH 5.00. ChTRPz exhibited higher partition coefficients than TRPz did in all the assayed systems. The decrease in PEG molecular weight and the increase in tie line length were observed to displace the partitioning equilibrium of both proteins to the top phase, while phase volume ratios in the range 0.5–1.5 showed not to affect protein partitioning behaviour. Systems formed by PEG of molecular weight 600 with composition corresponding to a high tie line length (PEG 12.93%, w/w and NaTart 21.20%, w/w) are able to recover most of both zymogens in the polymer-enriched phase. A crucial role of PEG–protein interaction in the partitioning mechanism was evidenced by isothermal calorimetric titrations. The major content of highly exposed tryptophan rests, present in ChTRPz molecule, could be considered to be determinant of its higher partition coefficient due to a selective charge transfer interaction with PEG molecule. A satisfactory correlation between partition coefficient and protein surface hydrophobicity was observed in systems formed with PEGs of molecular weight above 4000, this finding being relevant in the design of an extraction process employing aqueous two-phase systems.  相似文献   

3.
Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel.  相似文献   

4.
Aqueous two-phase systems (ATPS) formed by polymer and salt have been utilized to enrich the desired biomolecule into one of the phase with higher yield and purity. The eco-friendly, biodegradable poly ethylene glycol (PEG) and different citrate salts were chosen as ATPS phase components to investigate the partitioning behavior of α-lactalbumin (α-La). System factors and process parameters such as type and concentration of salt, molecular weight and concentration of PEG, pH, temperature and the effect of additives were studied and the results are discussed in detail. PEG 1000–tri-potassium citrate system yields high partition coefficient of 20 with a better yield of 98 % in the top phase. The addition of NaCl as an additive and acidic pH lowers the yield of α-La in the top phase. Influence of phase volume ratio (V r) on partitioning was studied and found that the partition coefficient remains almost constant along the tie line. High yield was achieved at a V r of 3.5 at the tie line length of 50.63 (%, w/w).  相似文献   

5.
6.
Studies on the partition and purification of penicillin acylase from Escherichia coli osmotic shock extract were performed in poly(ethylene glycol)–sodium citrate systems. Partition coefficient behavior of the enzyme and total protein are similar to those described in other reports, increasing with pH and tie line length and decreasing with PEG molecular weight. However, some selectivity could be attained with PEG 1000 systems and long tie line at pH 6.9. Under these conditions 2.6-fold purification with 83% yield were achieved. Influence of pH on partition shows that is the composition of the system and not the net charge of the enzyme that determines the behaviour in these conditions. Addition of NaCl to PEG 3350 systems significantly increases the partition of the enzyme. Although protein partition also increased, purification conditions were possible with 1.5 M NaCl where 5.7-fold purification and 85% yield was obtained. This was possible due to the higher hydrophobicity of the enzyme compared to that of most contaminants proteins.  相似文献   

7.
The primary recovery of c‐phycocyanin and b‐phycoerythrin from Spirulina maxima and Porphyridium cruentum, respectively, using an established extraction strategy was selected as a practical model system to study the generic application of polyethylene glycol (PEG)‐phosphate aqueous two‐phase systems (ATPS). The generic practical implementation of ATPS extraction was evaluated for the recovery of colored proteins from microbial origin. A comparison of the influence of system parameters, such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio, on the partition behavior of c‐phycocyanin and b‐phycoerythrin was carried out to determine under which conditions target colored protein and contaminants concentrate to opposite phases. One‐stage processes are proposed for the primary recovery of the colored proteins. PEG1450‐phosphate ATPS extraction (volume ratio (VR) equal to 0.3, tie‐line length (TLL) of 34 % w/w and system pH 7.0) for the recovery of c‐phycocyanin from Spirulina maxima resulted in a primary recovery process that produced a protein purity of 2.1 ± 0.2 (defined as the relationship of 620 nm to 280 nm absorbance) and a product yield of 98 % [w/w]. PEG1000‐phosphate ATPS extraction (i.e., VR = 1.0, PEG 1000, TLL 50 % w/w and system pH 7.0) was preferred for the recovery of b‐phycoerythrin from Porphyridium cruentum, which resulted in a protein purity of 2.8 ± 0.2 (defined as the relationship of 545 nm to 280 nm absorbance) and a product yield of 82 % [w/w]. The purity of c‐phycocyanin and b‐phycoerythrin from the crude extract increased 3‐ and 4‐fold, respectively, after ATPS. The results reported herein demonstrated the benefits of the practical generic application of ATPS for the primary recovery of colored proteins from microbial origin as a first step for the development of purification processes.  相似文献   

8.
The partition behavior of glycomacropeptide (GMP) was determined in polyethylene glycol (PEG) and sodium citrate aqueous two-phase systems (ATPS). It was found that the partitioning of GMP depends on PEG molar mass, tie line length, pH, NaCl concentration and temperature. The obtained data indicates that GMP is preferentially partitioned into the PEG phase without addition of NaCl at pH 8.0. Larger tie line lengths and higher temperatures favor GMP partition to the PEG phase. Furthermore, it was verified that PEG molar mass and concentration have a slight effect on GMP partition. The increase in the molar mass of PEG induces a reduction of the protein solubility in the top PEG rich phase, being shown that the use of PEG1500 is beneficial for the extraction of GMP. A protein recovery higher than 85% was obtained in the top phase of these systems, clearly demonstrating its suitability as a starting point for the separation of GMP.  相似文献   

9.
A study was made of the partition and purification of -amylase from a culture supernatant of Bacillus subtilis in the polyethylene glycol (PEG)—citrate aqueous two-phase system (ATPS). Factors that influenced the partition of the protein in this system, including the molecular weight of the PEG, the tie line length of ATPS, the pH value and the sodium chloride concentration, were investigated. Purification of -amylase was attained with a purification factor (PF) of 1.8 and 90% yield at pH 6.0 in a PEG1000-citrate ATPS with short tie line length. By utilizing the salt-out effect of neutral salt, the purification of -amylase was further improved to 2.0 of PF and 80% yield in a PEG3350-citrate ATPS with 4% sodium chloride.  相似文献   

10.
Summary An aqueous two-phase system of polyethylene glycol (PEG) and potassium phosphate was developed for extraction of a cutinase from cell debris of a recombinant Escherichia coli strain. Basic studies to identify the primary factors which affect cutinase partition, namely the influence of polymer molecular weight, polymer concentration and pH were carried out using a purified preparation of the cutinase. The enzyme partition coefficient was enhanced with decreasing PEG molecular weight, increasing tie-line length and pH.  相似文献   

11.
Two sequential half-fraction designs were applied to studying the alpha-toxin partition produced by Clostridium perfringens type A in aqueous two phase systems (ATPS), as a function of four factors: PEG molar mass and concentration, phosphate concentration and pH. The highest purification factor, yield and partition coefficient results were obtained with PEG 8000 (15%, w/w), phosphate at 20% (w/w) and pH 8.0. This system allows, in a single step, an alpha-toxin purification of 4.6-fold with final activity yield of 230% and partition coefficient of 113.9 in the PEG rich phase.  相似文献   

12.
Gündüz U 《Bioseparation》2000,9(5):277-281
Partitioning of proteins in aqueous two-phase systems has been shown to provide a powerful method for separating and purifying mixtures of biomolecules by extraction. These systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. There are many factors which influence the partition coefficient K, the ratio of biomolecule concentration in the top phase to that in the bottom phase, in aqueous two-phase systems. The value of the partition coefficient relies on the physico-chemical properties of the target biomolecule and other molecules and their interactions with those of the chosen system. In this work, the partition behavior of pure bovine serum albumin in aqueous two-phase systems was investigated in order to see the effects of changes in phase properties on the partition coefficient K. The concentration of NaCl and pH were considered to be the factors having influence on K. Optimal conditions of these factors were obtained using the Box-Wilson experimental design. The optimum value of K was found as 0.0126 when NaCl concentration and pH were 0.14 M and 9.8, respectively, for a phase system composed of 8% (w/w) polyethylene glycol 3,350 - 9 (% w/w) dextran 37,500 - 0.05 M phosphate at 20 °C.  相似文献   

13.
A novel aqueous two phase system (ATPS) using trimethylamine-polyethylene glycols (TMA-PEG) to promote the extraction of C-phycocyanin (C-PC) from S.platensis was introduced. The purity of C-PC (EP) obtained in the ATPS of PEG1000/Na3PO4 was increased 2.1 times by the addition of TMA-PEG1000. The purification factor was enhanced from 2.9 to 10.1 when 65% TMA-PEG1000 was added in the system. The ATPS operation must be carried out in the pH range of 6.0-7.0 and at temperatures less than 35 °C for maintaining the stability of C-PC. The partition coefficient and recovery ratio of C-PC increased with the increasing concentration of TMA-PEG. The system parameters like TMA-PEG1000 content, tie line length (TLL), pH, temperature and phase volume ratio (Vr) were screened and optimized using the fractional factorial design and Box-Behnken experiment design. The optimized system is composed of 11.8% PEG1000/TMA-PEG1000 (w/w), 64.42% TMA-PEG1000 (w/w PEG1000) and 9.5% Na3PO4 (w/w) with 38.19% TLL (w/w) and 0.89 Vr at pH 6.5 and 25 °C. The obtained value of EP was 5.21 in one-stage ATPS and 6.7 in two-stage ATPS. The recovery ratio of C-PC in the new ATPS extraction system was more than 97%.  相似文献   

14.
Unilamellar vesicles composed of phosphatidylcholine (PC) and either phosphatidic acid (PA) or phosphatidylglycerol (PG) partition to the upper poly(ethylene glycol) (PEG)-rich phase of a charge-sensitive 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 7, consistent with the vesicles bearing a net negative charge. When prepared in the presence of a pH gradient (interior acidic), PC/PA vesicles exhibit an increased partition to the top PEG-rich phase, consistent with a redistribution of the PA from the inner to the outer monolayer of the vesicle bilayer. Conversely, when prepared in the presence of a pH gradient (interior basic), PC/PG vesicles exhibit a decreased top-phase partition, consistent with a redistribution of the PG from the outer to the inner monolayer of the vesicle bilayer. Unilamellar vesicles composed of PC and stearylamine partition to the lower dextran-rich phase of a 5%:5% (w/w) PEG 8000/Dextran T-500 phase system containing 10 mM sodium phosphate at pH 8.5, consistent with the vesicles bearing a net positive charge. When prepared in the presence of a pH gradient (interior acidic), conditions under which the stearylamine is trapped on the inner monolayer of the bilayer, the vesicles now partition predominantly to the interface in a manner similar to vesicles composed of PC alone. These results demonstrate that partitioning in aqueous two-phase polymer systems is a sensitive method for monitoring the asymmetry of charged lipids in model membrane systems and also suggests that partitioning in charge-sensitive systems depends only on the physical nature of the exterior surface of the membrane.  相似文献   

15.
Poly ethylene glycol (PEG)-poly acrylic acid (PAA) based aqueous two-phase system (ATPS) was selected as a practical model to recover glycosaminoglycans (GAGs) from tannery wastewater. The influence of PEG molecular weight, tie line length (TLL), pH, temperature and NaCl concentration on the partition coefficient of glycosaminoglycans from tannery wastewater was studied. Partition coefficient of glycosaminoglycan decreases on increase of PEG molecular weight, NaCl concentration and temperature, whereas it increases with increase of pH. In the PEG-rich phase, increased partitioning of GAGs was observed with increase in TLL. The partitioning of GAGs was better in PEG 4000 at pH 8.0, 20 °C with a yield of 91.50%. This study demonstrates the potential application of ATPS processes for the recovery of GAGs from complex biological suspensions.  相似文献   

16.
In order to develop a new strategy for β-lactoglobulin (β-lg) removal from whey protein, partitioning of α-lactalbumin (α-la), β-lg and glycomacropeptide (Gmp) was studied using aqueous two phase systems (ATPS). A system composed of 13% (w/w) polyethylene glycol (PEG, average molar mass 2000 g/mol) and 13% (w/w) potassium phosphate was used at 25°C. A central composite rotatable design (CCRD) associated to the response surface methodology (RSM) was applied to investigate the effects of NaCl concentration and pH on the partition of these proteins. It was found that α-la and Gmp partitioned to the top phase rich in PEG, whereas β-lg partitioned to the bottom phase rich in salt. According to the RSM, optimal conditions for β-lg removal where found where pH was equal to 6.7 and salt concentration was 0.35 mol/L. Under these conditions, the partition coefficient K(α) was 0.48 and K(Gmp) was 0.92. On the other hand, the partition coefficient K(β) was only 0.01. In such conditions β-lg preferentially concentrates in the bottom phase, while the top phase exclusively contains the proteins α-la and Gmp. Fractionation of the proteins from fresh whey was performed in a three stage cross-flow extraction system. The extraction yield for β-lg in the bottom phase was 97.3%, while the yields for α-la and Gmp in the top phase were 81.1% and 97.8%, respectively.  相似文献   

17.
The partitioning of bovine trypsin and alpha-chymotrypsin--proteases of similar physico-chemical properties--in different polyethyleneglycol/sodium citrate aqueous two-phase systems was investigated. The effect of different factors such as polyethyleneglycol molecular weight, pH, tie line length, temperature and the presence of an inorganic salt on the protein partition coefficient were analysed. Both a decrease in PEG molecular weight and an increase in pH led to a higher partition coefficient for both enzymes. Aqueous two-phase systems formed by PEG of molecular weight 3350 and citrate pH 5.2 showed the best separation capability which was enhanced in presence of sodium chloride 3%. The transfer of both proteins to the top phase was associated with negative enthalpic and entropic changes.  相似文献   

18.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases—molecular weight of the PEG, system pH, system temperature, and NaCl concentration—were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   

19.
An experimental design was used to optimize plasmid purification from an alkaline lysate of Escherichia coli cells using PEG-sodium citrate aqueous two-phase systems (ATPS), and to evaluate the influence of pH, PEG molecular weight, tie line length, phase volume ratio, and lysate load. To build the mathematical model and minimize the number of experiments for the design parameters, response surface methodology (RMS) with an orthogonal rotatable central composite design was defined based on the conditions found for the highest purification by preliminary tests. The adequacy of the calculated models for the plasmid recovery and remaining RNA were confirmed by means of variance analysis and additional experiments. Analysis of contours of constant response as a function of pH, PEG molecular weight, tie line length, and cell lysate load for three different phase volume ratios revealed different effects of these five factors on the studied parameters. Plasmid recovery of 99% was predicted for a system with PEG 400, pH 6.9, tie line length of 38.7%, phase volume ratio of 1.5, and lysate load of 10% (v/v). Under these conditions the predicted RNA removal was 68%.  相似文献   

20.
A new extractive fermentation process using PEG and potassium phosphate aqueous two-phase system (ATPS) was developed for enhanced production of gellan-hydrolysing enzyme by Bacillus thuringiensis H14. Five different Bacillus sp. were tested for their ability to synthesize gellan-hydrolysing enzyme. Bacillus thuringiensis H14 was found to be the best organism for gellan-hydrolysing enzyme production. The enzyme showed maximum activity at pH 7.5 and 40 °C. The partition studies of gellan-hydrolysing enzyme in the system using PEG X (X = 9000, 6000, 4000) and potassium phosphate–water and PEG–sodium citrate–water system indicated at PEG (4000)– potassium phosphate–water is the best system for partitioning of gellan-hydrolysing enzyme into the PEG phase (K = 4.99). Gellan-hydrolysing enzyme production by Bacillus thuringiensis H14 was studied in ATPSs composed of PEG X (X = 9000, 6000, 4000) and potassium phosphate. The top phase is continuous and rich in PEG while the bottom phase is dispersed and is rich in phosphate, microbial cells being mainly retained in the bottom phase. The gellan-hydrolysing enzyme produced during fermentation partitioned into the upper PEG phase and total gellan-hydrolysing enzyme produced was 2.12, 2.29 and 2.40 times higher than that of homogeneous fermentation when the fermentations were carried out using PEG 9000–potassium phosphate–water, PEG 6000–potassium phosphate–water, PEG 4000–potassium phosphate–water systems respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号