首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of foot deformities are related to arch collapse or instability, especially the longitudinal arch. Although the relationship between the plantar fascia and arch height has been previously investigated, the stress distribution remains unclear. The aim of this study was to explore the role of the plantar ligaments in foot arch biomechanics. We constructed a geometrical detailed three-dimensional (3-D) finite element (FE) model of the human foot and ankle from computer tomography images. The model comprised the majority of joints in the foot as well as bone segments, major ligaments, and plantar soft tissue. Release of the plantar fascia and other ligaments was simulated to evaluate the corresponding biomechanical effects on load distribution of the bony and ligamentous structures. These intrinsic ligaments of the foot arch were sectioned to simulate different pathologic situations of injury to the plantar ligaments, and to explore bone segment displacement and stress distribution. The validity of the 3-D FE model was verified by comparing results with experimentally measured data via the displacement and von Mise stress of each bone segment. Plantar fascia release decreased arch height, but did not cause total collapse of the foot arch. The longitudinal foot arch was lost when all the four major plantar ligaments were sectioned simultaneously. Plantar fascia release was compromised by increased strain applied to the plantar ligaments and intensified stress in the midfoot and metatarsal bones. Load redistribution among the centralized metatarsal bones and focal stress relief at the calcaneal insertion were predicted. The 3-D FE model indicated that plantar fascia release may provide relief of focal stress and associated heel pain. However, these operative procedures may pose a risk to arch stability and clinically may produce dorsolateral midfoot pain. The initial strategy for treating plantar fasciitis should be non-operative.  相似文献   

2.
The process of the flatfoot formation is accompanied not only by stretching but also by pressing of the plantar ligaments and muscles. In the plantar aponeurosis and ligaments subjected to pressing, adaptive rearrangements are observed; they are accompanied by transformation of the fibrillar connective tissue into cartilaginous one, that rather prevents the ligaments to affect the heigh of the fornix. In the structure of the plantar muscles rather noticeable changes occur, destructive ones including, that is seen in their microscopical picture.  相似文献   

3.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

4.
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.  相似文献   

5.
Humans stand alone from other primates in that we propel our bodies forward on a relatively stiff and arched foot and do so by employing an anatomical arrangement of bones and ligaments in the foot that can operate like a “windlass.” This is a significant evolutionary innovation, but it is currently unknown when during hominin evolution this mechanism developed and within what genera or species it originated. The presence of recently discovered fossils along with novel research in the past two decades have improved our understanding of foot mechanics in humans and other apes, making it possible to consider this question more fully. Here we review the main elements thought to be involved in the production of an effective, modern human‐like windlass mechanism. These elements are the triceps surae, plantar aponeurosis, medial longitudinal arch, and metatarsophalangeal joints. We discuss what is presently known about the evolution of these features and the challenges associated with identifying each of these specific components and/or their function in living and extinct primates for the purpose of predicting the presence of the windlass mechanism in our ancestors. In some cases we recommend alternative pathways for inferring foot mechanics and for testing the hypothesis that the windlass mechanism evolved to increase the speed and energetic efficiency of bipedal gait in hominins. Am J Phys Anthropol 156:1–10, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The ratio of the power arm (the distance from the heel to the talocrural joint) to the load arm (that from the talocrural joint to the distal head of the metatarsals), or RPL, differs markedly between the human and ape foot. The arches are relatively higher in the human foot in comparison with those in apes. This study evaluates the effect of these two differences on biomechanical effectiveness during bipedal standing, estimating the forces acting across the talocrural and tarsometatarsal joints, and attempts to identify which type of foot is optimal for bipedal standing. A simple model of the foot musculoskeletal system was built to represent the geometric and force relationships in the foot during bipedal standing, and measurements for a variety of human and ape feet applied. The results show that: (1) an RPL of around 40% (as is the case in the human foot) minimizes required muscle force at the talocrural joint; (2) the presence of an high arch in the human foot reduces forces in the plantar musculature and aponeurosis; and (3) the human foot has a lower total of force in joints and muscles than do the ape feet. These results indicate that the proportions of the human foot, and the height of the medial arch are indeed better optimized for bipedal standing than those of apes, further suggesting that their current state is to some extent the product of positive selection for enhanced bipedal standing during the evolution of the foot.  相似文献   

7.
The net force and moment of a joint have been widely used to understand joint disease in the foot. Meanwhile, it does not reflect the physiological forces on muscles and contact surfaces. The objective of the study is to estimate active moments by muscles, passive moments by connective tissues and joint contact forces in the foot joints during walking. Joint kinematics and external forces of ten healthy subjects (all males, 24.7 ± 1.2 years) were acquired during walking. The data were entered into the five-segment musculoskeletal foot model to calculate muscle forces and joint contact forces of the foot joints using an inverse dynamics-based optimization. Joint reaction forces and active, passive and net moments of each joint were calculated from muscle and ligament forces. The maximum joint reaction forces were 8.72, 4.31, 2.65, and 3.41 body weight (BW) for the ankle, Chopart’s, Lisfranc and metatarsophalangeal joints, respectively. Active and passive moments along with net moments were also obtained. The maximum net moments were 8.6, 8.4, 5.4 and 0.8%BW∙HT, respectively. While the trend of net moment was very similar between the four joints, the magnitudes and directions of the active and passive moments varied between joints. The active and passive moments during walking could reveal the roles of muscles and ligaments in each of the foot joints, which was not obvious in the net moment. This method may help narrow down the source of joint problems if applied to clinical studies.  相似文献   

8.
The paper deals with the visualizing study of the ankle joint and foot by MRI and with the problems in the interpretation of magnetic resonance images in health. For this, 50 healthy volunteers without diseases and lesions of the ankle joint and foot were examined. The study was performed by using flexible superficial coils and T1-, T2-, and proton-weighed pulse-sequences in the orthogonal projections. The articular surfaces and cavity of the ankle joint were evaluated. The specific features of visualization of the muscles and tendons of this area and the pattern of fluid under their membranes were explored. The typical location of the "magic corner" phenomenon was revealed. The individual specific features of identification of the ligaments of the ankle joint and foot and plantar aponeurosis were defined. The features of visualization of bones simulating abnormalities were studied. A category of normalcy in the MRI of the ankle joint and foot was formulated.  相似文献   

9.
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°–10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.  相似文献   

10.
Many patients with low back and/or pelvic girdle pain feel relief after application of a pelvic belt. External compression might unload painful ligaments and joints, but the exact mechanical effect on pelvic structures, especially in (active) upright position, is still unknown. In the present study, a static three-dimensional (3-D) pelvic model was used to simulate compression at the level of anterior superior iliac spine and the greater trochanter. The model optimised forces in 100 muscles, 8 ligaments and 8 joints in upright trunk, pelvis and upper legs using a criterion of minimising maximum muscle stress. Initially, abdominal muscles, sacrotuberal ligaments and vertical sacroiliac joints (SIJ) shear forces mainly balanced a trunk weight of 500N in upright position. Application of 50N medial compression force at the anterior superior iliac spine (equivalent to 25N belt tension force) deactivated some dorsal hip muscles and reduced the maximum muscle stress by 37%. Increasing the compression up to 100N reduced the vertical SIJ shear force by 10% and increased SIJ compression force with 52%. Shifting the medial compression force of 100N in steps of 10N to the greater trochanter did not change the muscle activation pattern but further increased SIJ compression force by 40% compared to coxal compression. Moreover, the passive ligament forces were distributed over the sacrotuberal, the sacrospinal and the posterior ligaments. The findings support the cause-related designing of new pelvic belts to unload painful pelvic ligaments or muscles in upright posture.  相似文献   

11.
A biomechanical model of the foot   总被引:3,自引:0,他引:3  
The foot is modeled as a statically indeterminate structure supporting its load at the heads of the five metatarsals and the tuberosity of the calcaneous. The distribution of support is determined through an analysis of the deformations caused in the structure as a result of the forces at these locations. The analysis includes the effect of the plantar aponeurosis and takes into account the deformation of the metatarsals and bending of the joints. A parametric study is presented to illustrate the behavior of the solution under a broad range of conditions.  相似文献   

12.
Forefoot strike becomes popular among runners because it facilitates better impact attenuation. However, forefoot strike may overload the plantar fascia and impose risk of plantar fasciitis. This study aimed to examine and compare the foot arch deformation and plantar fascia tension between different foot strike techniques in running using a computational modelling approach. A three-dimensional finite element foot model was reconstructed from the MRI of a healthy runner. The foot model included twenty bones, bulk soft tissue, ligaments, tendons, and plantar fascia. The time-series data of segmental kinematics, foot muscle force, and ankle joint reaction force were derived from a musculoskeletal model of the same participant based on the motion capture analysis and input as the boundary conditions for the finite element analysis. Rearfoot strike and forefoot strike running were simulated using a dynamic explicit solver. The results showed that, compared to rearfoot strike, forefoot strike reduced the foot arch height by 9.12% and increased the medial longitudinal arch angle by 2.06%. Forefoot strike also increased the plantar connective tissues stress by 18.28–200.11% and increased the plantar fascia tensile force by 18.71–109.10%. Although it is currently difficult to estimate the threshold value of stress or force that results in injury, forefoot strike runners appeared to be more vulnerable to plantar fasciitis.  相似文献   

13.
A mechanism for the postural balance of the human torso over the hip joints is reported that does not appear to have been fully recognised. The centre of gravity of the torso is usually considered poised above the hips. This is in a state of unstable equilibrium. Here, we propose that body weight acting through the sacrum is counter-balanced by tension in the ilio-femoral ligament; the hips acting as the fulcrum. This places the torso in stable equilibrium and means that balance may be maintained with minimal muscular forces. The joint reaction force due to this mechanism in a two-legged stance is then of the order of the body-weight on each hip. An implication is that capsular ligaments are important and consideration should be given to retaining or restoring them as much as possible in hip arthroplasty.  相似文献   

14.
Based on musculoskeletal anatomy of the lower back, abdominal wall, pelvis and upper legs, a biomechanical model has been developed on forces in the load transfer through the pelvis. The aim of this model is to obtain a tool for analyzing the relations between forces in muscles, ligaments and joints in the transfer of gravitational and external load from the upper body via the sacroiliac joints to the legs in normal situations and pathology. The study of the relation between muscle coordination patterns and forces in pelvic structures, in particular the sacroiliac joints, is relevant for a better understanding of the aetiology of low back pain and pelvic pain. The model comprises 94 muscle parts, 6 ligaments and 6 joints. It enables the calculation of forces in pelvic structures in various postures. The calculations are based on a linear/non-linear optimization scheme. To gain a better understanding of the function of individual muscles and ligaments, deviant properties of these structures can be preset. The model is validated by comparing calculations with EMG data from the literature. For agonistic muscles, good agreement is found between model calculations and EMG data. Antagonistic muscle activity is underestimated by the model. Imposed activity of modelled antagonistic muscles has a minor effect on the mutual proportions of agonistic muscle activities. Simulation of asymmetric muscle weakness shows higher activity of especially abdominal muscles.  相似文献   

15.
The human foot is a very complex structure comprising numerous bones, muscles, ligaments and synovial joints. As the only component in contact with the ground, the foot complex delivers a variety of biomechanical functions during human locomotion, e.g. body support and propulsion, stability maintenance and impact absorption. These need the human foot to be rigid and damped to transmit ground reaction forces to the upper body and maintain body stability, and also to be compliant and resilient to moderate risky impacts and save energy. How does the human foot achieve these apparent conflicting functions? In this study, we propose a phase-dependent hypothesis for the overall locomotor functions of the human foot complex based on in-vivo measurements of human natural gait and simulation results of a mathematical foot model. We propse that foot functions are highly dependent on gait phase, which is a major characteristics of human locomotion. In early stance just after heel strike, the foot mainly works as a shock absorber by moderating high impacts using the viscouselastic heel pad in both vertical and horizontal directions. In mid-stance phase (-80% of stance phase), the foot complex can be considered as a springy rocker, reserving external mechanical work using the foot arch whilst moving ground contact point forward along a curved path to maintain body stability. In late stance after heel off, the foot complex mainly serves as a force modulator like a gear box, modulating effective mechanical advantages of ankle plantiflexor muscles using metatarsal-phalangeal joints. A sound under- standing of how diverse functions are implemented in a simple foot segment during human locomotion might be useful to gain insight into the overall foot locomotor functions and hence to facilitate clinical diagnosis, rehabilitation product design and humanoid robot development.  相似文献   

16.
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations of 8.81° at the ankle, and a decreased metatarsophalangeal joint extension of 4.65°. The resulting peak pressure reductions at individual MTHs, however, may be site-specific and possibly dependent on foot structure, such as intrinsic alignment of the metatarsals. The relationships between muscular control, internal joint movements, and plantar load distributions are envisaged to have important clinical implications on tendo-Achilles lengthening procedures, and to provide surgeons with an understanding of the underlying mechanism for relieving forefoot pressure in diabetic patients suffering from ankle equinus contracture.  相似文献   

17.
Several full body musculoskeletal models have been developed for research applications and these models may potentially be developed into useful clinical tools to assess gait pathologies. Existing full-body musculoskeletal models treat the foot as a single segment and ignore the motions of the intrinsic joints of the foot. This assumption limits the use of such models in clinical cases with significant foot deformities. Therefore, a three-segment musculoskeletal model of the foot was developed to match the segmentation of a recently developed multi-segment kinematic foot model. All the muscles and ligaments of the foot spanning the modeled joints were included. Muscle pathways were adjusted with an optimization routine to minimize the difference between the muscle flexion–extension moment arms from the model and moment arms reported in literature. The model was driven by walking data from five normal pediatric subjects (aged 10.6±1.57 years) and muscle forces and activation levels required to produce joint motions were calculated using an inverse dynamic analysis approach. Due to the close proximity of markers on the foot, small marker placement error during motion data collection may lead to significant differences in musculoskeletal model outcomes. Therefore, an optimization routine was developed to enforce joint constraints, optimally scale each segment length and adjust marker positions. To evaluate the model outcomes, the muscle activation patterns during walking were compared with electromyography (EMG) activation patterns reported in the literature. Model-generated muscle activation patterns were observed to be similar to the EMG activation patterns.  相似文献   

18.
To elucidate the characteristics of calcium accumulation of human plantar and palmar aponeuroses, the authors determined the calcium content of human plantar and palmar aponeuroses by atomic absorption flame emission spectrophotometry. The subjects consisted of 9 men and 14 women, ranging in age from 61 to 93 yr. In the plantar aponeurosis, the calcium content was significantly higher in the anterior and posterior parts than in the middle part. It is known that pressure distribution under the sole of a foot is higher in the anterior and posterior parts than in the middle part. The present study suggests that the accumulation of calcium in the plantar aponeurosis is related with the pressure distribution under the sole of a foot. The calcium content increased progressively with aging in the anterior part of the plantar aponeurosis, but not in the middle and posterior parts. Regarding the palmar aponeurosis, the calcium content was significantly higher in the anterior and posterior parts in comparison with the middle part. It was found that the calcium content increased progressively with aging in the posterior part of the palmar aponeurosis, whereas it did not increase significantly with aging in the anterior and middle parts. Regarding the relationship between the calcium content of the aponeuroses and the bone mineral density, a significant correlation was found between the calcium content in the anterior part of the palmar aponeurosis and the bone mineral density of the scaphoid bone.  相似文献   

19.
Impaired control of mediolateral body motion during walking is an important health concern. Developing treatments to improve mediolateral control is challenging, partly because the mechanisms by which muscles modulate mediolateral ground reaction force (and thereby modulate mediolateral acceleration of the body mass center) during unimpaired walking are poorly understood. To investigate this, we examined mediolateral ground reaction forces in eight unimpaired subjects walking at four speeds and determined the contributions of muscles, gravity, and velocity-related forces to the mediolateral ground reaction force by analyzing muscle-driven simulations of these subjects. During early stance (0-6% gait cycle), peak ground reaction force on the leading foot was directed laterally and increased significantly (p<0.05) with walking speed. During early single support (14-30% gait cycle), peak ground reaction force on the stance foot was directed medially and increased significantly (p<0.01) with speed. Muscles accounted for more than 92% of the mediolateral ground reaction force over all walking speeds, whereas gravity and velocity-related forces made relatively small contributions. Muscles coordinate mediolateral acceleration via an interplay between the medial ground reaction force contributed by the abductors and the lateral ground reaction forces contributed by the knee extensors, plantarflexors, and adductors. Our findings show how muscles that contribute to forward progression and body-weight support also modulate mediolateral acceleration of the body mass center while weight is transferred from one leg to another during double support.  相似文献   

20.
The objective of this study was to develop and validate a subject-specific framework for modelling the human foot. This was achieved by integrating medical image-based finite element modelling, individualised multi-body musculoskeletal modelling and 3D gait measurements. A 3D ankle–foot finite element model comprising all major foot structures was constructed based on MRI of one individual. A multi-body musculoskeletal model and 3D gait measurements for the same subject were used to define loading and boundary conditions. Sensitivity analyses were used to investigate the effects of key modelling parameters on model predictions. Prediction errors of average and peak plantar pressures were below 10% in all ten plantar regions at five key gait events with only one exception (lateral heel, in early stance, error of 14.44%). The sensitivity analyses results suggest that predictions of peak plantar pressures are moderately sensitive to material properties, ground reaction forces and muscle forces, and significantly sensitive to foot orientation. The maximum region-specific percentage change ratios (peak stress percentage change over parameter percentage change) were 1.935–2.258 for ground reaction forces, 1.528–2.727 for plantar flexor muscles and 4.84–11.37 for foot orientations. This strongly suggests that loading and boundary conditions need to be very carefully defined based on personalised measurement data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号