首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
培养方式对真皮组织体外构建的影响   总被引:2,自引:0,他引:2  
采用静态培养和转瓶培养方式分别构建真皮组织,考察培养方式和搅拌转速对细胞在三维支架材料中增殖、代谢、分布的影响。结果表明,由转瓶培养方式构建的细胞-材料复合物,其最终细胞密度和细胞比生长速率均明显高于静态培养(14.2~27.6×106 cells/cm3 vs 10.1×106 cells/cm3和0.145~0.262 d-1 vs 0.111 d-1),而转速达80 r/min的转瓶尤其突出;静态培养的细胞-材料复合物内部细胞稀少,且分布不均匀,转瓶培养的细胞-材料复合物在材料表面和内部细胞密度都有所提高,分布情况也得到改善,且80 r/min转瓶培养的组织其细胞密度和分布均优于10 r/min和40 r/min转瓶培养。转瓶培养在其转速达到一定强度时能明显提高细胞在支架中的增殖速率,缩短培养时间,并有效改善细胞在支架内的分布,是一种理想的培养方式。  相似文献   

2.
用1640SFM无血清培养基在VF-2中空纤维细胞培养系统内培养7E8杂交瘤细胞,最大活细胞密度为2.34×106/ml,该活细胞密度分别是转瓶培养和静态瓶培养结果的3.7倍和2.2倍。培养42天共收获7E8细胞培养液10000ml,其单克隆抗体(简称单抗)的ELIsA效价为1:20000左右,该效价是转瓶培养和静态瓶培养结果的25倍。ID。0mI培养液经50%饱和硫酸铵盐析和sephadex G-200柱层析提纯,获纯化单抗IgG 51.82mg。该系统平均每天生产单抗12.3mg。研究结果表明;在中空纤维培养系统内用无血清培养基培养杂交瘤细胞的方法可望用于体外大规模生产单抗。  相似文献   

3.
PHB/PLLA组织工程前交叉韧带支架材料改性的实验研究   总被引:2,自引:0,他引:2  
目的:探索体外构建组织工程前交叉韧带(anterior cruciate ligament,ACL)的三维支架材料。方法:以聚羟基丁酸已酯/聚左旋乳酸(PHB/PLLA1:1)制备"三明治"样结构共聚物并测量其孔隙率等指标。以I型胶原对制备的PHB/PLLA支架进行杂化,获得PHB/PLLA胶原杂化支架。扫描电镜观察其表面结构。将兔皮肤成纤维细胞(SF)接种于PHB/PLLA支架与PHB/PLLA胶原杂化支架,观察其在材料上生长情况。结果:PHB/PLLA支架杂化后胶原填充于纤维空隙,分布比较均匀。体外培养的胶原杂化支架材料上要比PHB/PLLA支架有更多的皮肤成纤维细胞生长。结论:胶原杂化有利于细胞种植和生长,PHB/PLLA胶原杂化支架具有良好的三维构型和生物相容性,有望为前交叉韧带损伤的修复提供了一种新型的支架材料。  相似文献   

4.
目的通过牛肾细胞在两种不同载体中培养效果的比较,为牛肾细胞在细胞工厂中规模化生产提供真实的、有力的支持。方法不同代次牛肾细胞在两种载体中经过相同培养条件进行培养。结果实验中原代牛肾细胞在细胞工厂接种密度为5.5×104/cm2左右,在15 L转瓶接种密度为9.0×104/cm2左右。一代牛肾细胞在细胞工厂接种密度为6.5×104/cm2左右,在15 L转瓶接种密度为10×104/cm2左右。二代牛肾细胞在细胞工厂接种密度为7.0×104/cm2左右,在15 L转瓶接种密度为14×104/cm2左右。两种载体中牛肾细胞生长状况均能达到培养要求。结论细胞工厂能在有限的空间内利用最大限度的培养表面培养牛肾细胞,不仅节约了传代前的细胞用量,而且提高了培养后的细胞产量。  相似文献   

5.
目的以细胞工厂代替转瓶培养轮状病毒基因重配株Ls的可行性研究。方法采用细胞工厂与相应的转瓶培养工艺作对比,比较两种容器内细胞生长状态与病毒收获液滴度,并对细胞工厂培养条件进行了优化。结果以相同浓度接种细胞时,细胞工厂4 d长成单层,转瓶却需要7 d,经细胞仪计数后单位面积内细胞密度相当;以相同MOI接种病毒后,转瓶内的病毒于第7天病毒滴度达到峰值,细胞已完全脱落;细胞工厂于第3天病毒滴度达到峰值,并实现了3次收获。细胞工厂每次收获的病毒液滴度都稳定在一定范围,与转瓶相当。另外,细胞工厂培养条件优化结果表明,Vero细胞最佳接种浓度为3.0×104细胞/cm2,接种病毒的最适MOI为0.02~0.04。结论使用细胞工厂培养Ls株病毒不仅提高了效率,而且减少了培养空间,可替代转瓶规模化生产轮状病毒疫苗。  相似文献   

6.
目的:体外培养神经干细胞,并将其种植在三维空间壳聚糖材料中,体外培养一段时间,使壳聚糖材料内尽量分布足够多的细胞.方法:将NSCs种植在4不同孔径直径16通道壳聚糖材料中,分别培养7d和14d.DAPI标记细胞.荧光镜下观察细胞在不同孔径直径材料中的分布.MTT法检测不同孔径直径壳聚糖材料内细胞的活性.结果:DAPI荧光显示,培养7d时.细胞仍然成团贴附在材料的通道内,少有细胞迁移至壳聚糖材料内,而培养14d可见细胞较均匀的分布在材料内,同时观察到,孔径直径为0-75μm和75-125μ m两种壳聚糖材料,容纳细胞数较孔径直径为125-200μ m和200-300μm少.MTT结果显示,200-300μ m孔径直径的壳聚糖材料内细胞活性为各组最高,间接提示其内所含细胞数最多,而培养7d和14d两种培养方式对同种孔径直径材料内所含细胞教并无影响.结论:壳聚糖可降解生物材料能显示出良好生物相容性;体外培养NSCs于孔径为200-300μm的壳聚糖材料内14d,其存活细胞多且分布较均匀.  相似文献   

7.
细胞工厂在轮状病毒基因重配株LD9培养中的应用初探   总被引:1,自引:0,他引:1  
为了探索用细胞工厂代替转瓶培养轮状病毒基因重配株LD9及收获高滴度的LD9病毒原液和提高产量的可行性,分别在2层4、层细胞工厂和3L1、5L转瓶培养Vero细胞,比较两种容器内细胞的生长状态。结果显示,以相同活细胞数2.5×104/ml同时接种两种不同培养容器时,细胞工厂培养3d已长成单层,而转瓶培养需5d;对两种容器长满单层时的细胞经胰酶消化后通过细胞仪计数、分析,结果显示,两种容器培养细胞长成单层时的单位面积细胞密度相当;对长成致密单层细胞的两种容器以相同的MOI(MOI=0.1)接种LD9病毒,转瓶培养的病毒于第8d病毒滴度达到高峰,为6.0~6.5 lgCCID50/ml;细胞工厂第5d病毒滴度达高峰,为6.5 lgCCID50/ml,并于第9d病毒滴度再次达到峰值,为6.0~6.5 lgCCID50/ml,实现二次收获病毒。  相似文献   

8.
9.
转瓶培养与生物反应器微载体培养乙脑病毒的比较   总被引:1,自引:0,他引:1  
分别用15L转瓶与15L生物反应器微载体(2.5g/L CytodexⅢ)系统培养Vero细胞并接种乙型脑炎病毒(简称乙脑病毒)。转瓶培养Vero细胞7~8d,细胞数最高能达到8×108;当单层细胞长至3.0~4.5×108时接种乙脑病毒,病毒滴度能达到6.5~6.98 lg PFU/ml,并能够连续收获4~5次;采用微载体系统培养Vero细胞,细胞密度最高能达到170×108;当单层细胞长至60~70×108时接种乙脑病毒,病毒滴度能达到7~7.5 lg PFU/ml,并能够连续收获13~15次。两种方式培养的乙脑病毒收获液分别经灭活、浓缩、柱层析纯化后制备Vero细胞乙脑纯化疫苗,各项检定指标均符合《中国药典》的相关要求。  相似文献   

10.
成功建立了人增生性瘢痕细胞和正常皮肤成纤维细胞的原代培养, 并利用热休克蛋白(HSP47)和成纤维细胞特异蛋白(FSP)标记物进行了鉴定。研究发现, 经过壳聚糖衍生物处理, 人增生性瘢痕成纤维细胞和正常皮肤成纤维细胞在培养中均出现了不同类型的蛋白表达。多功能转录因子蛋白(CTCF)在壳聚糖衍生物处理的增生性瘢痕成纤维细胞中出现表达上调; 在聚糖衍生物处理的正常皮肤成纤维细胞中数量无变化。YB-1结合蛋白在经壳聚糖处理的正常皮肤成纤维细胞与人增生性瘢痕细胞中的表达几乎无异, 但在未经壳聚糖处理的细胞中表达不同。C-MYC和P53蛋白在壳聚糖衍生物处理的增生性瘢痕纤维细胞中表达上调, 但在正常皮肤成纤维细胞中, 无论是否经过壳聚糖衍生物处理, 这两种蛋白都没有表达。上述4种蛋白在人增生性瘢痕细胞和正常皮肤成纤维细胞中表现出不同的表达方式, 这种新型壳聚糖衍生物可能在控制人增生性瘢痕细胞和正常皮肤成纤维细胞生长和增殖过程中起着重要作用。这些蛋白因子的表达机制目前还不是完全清楚, 有待于进一步研究。  相似文献   

11.
Radial-flow perfusion bioreactor systems have been designed and evaluated to enable direct cell seeding into a three-dimensional (3-D) porous scaffold and subsequent cell culture for in vitro tissue reconstruction. However, one of the limitations of in vitro regeneration is the tissue necrosis that occurs at the central part of the 3-D scaffold. In the present study, tubular poly-L-lactic acid (PLLA) porous scaffolds with an optimized pore size and porosity were prepared by the lyophilization method, and the effect of different perfusion conditions on cell seeding and growth were compared with those of the conventional static culture. The medium flowed radially from the lumen toward the periphery of the tubular scaffolds. It was found that cell seeding under a radial-flow perfusion condition of 1.1 mL/cm2 x min was effective, and that the optimal flow rate for cell growth was 4.0 mL/cm2 x min. At this optimal rate, the increase in seeded cells in the perfusion culture over a period of 5 days was 7.3-fold greater than that by static culture over the same period. The perfusion cell seeding resulted in a uniform distribution of cells throughout the scaffold. Subsequently, the perfusion of medium and hence the provision of nutrients and oxygen permitted growth and maintenance of the tissue throughout the scaffold. The perfusion seeding/culture system was a much more effective strategy than the conventional system in which cells are seeded under a static condition and cultured in a bioreactor such as a spinner flask.  相似文献   

12.
We developed a bioreactor for automated cell seeding of three-dimensional scaffolds by continuous perfusion of a cell suspension through the scaffold pores in oscillating directions. Using quantitative biochemical and image analysis techniques, we then evaluated the efficiency and uniformity of perfusion seeding of Polyactive foams as compared to conventional static and spinner flask methods. Finally, we assessed the efficacy of the perfusion seeding technique for different scaffolds and cell types. Perfusion seeding of chondrocytes into Polyactive foams resulted in "viable cell seeding efficiencies," defined as the percentages of initially loaded cells that were seeded and remained viable, that were significantly higher (75 +/- 6%) than those by static (57% +/- 5%) and spinner flask seeding (55% +/- 8%). In addition, as compared to static and spinner flask methods, cells seeded by perfusion were respectively 2.6-fold and 3.8-fold more uniformly distributed and formed more homogeneously sized cell clusters. Chondrocytes seeded by perfusion into Hyaff-11 nonwoven meshes were 26% and 63%, respectively, more uniformly distributed than following static and spinner flask seeding. Bone marrow stromal cells seeded by perfusion into ChronOS porous ceramics were homogeneously distributed throughout the scaffold volume, while following the static method, cells were found only near the top surface of the ceramic. In summary, we demonstrated that our cell seeding perfusion bioreactor generated constructs with remarkably uniform cell distributions at high efficiencies, and was effective for a variety of scaffolds and different mesenchymal cell types.  相似文献   

13.
The cell seeding density and spatial distribution in a 3-D scaffold are critical to the morphogenetic development of an engineered tissue. A dynamic depth-filtration seeding method was developed to improve the initial cell seeding density and spatial distribution in 3-D nonwoven fibrous matrices commonly used as tissue scaffolds. In this work, trophoblast-like ED27 cells were seeded in poly(ethylene terephthalate) (PET) matrices with various porosities (0.85-0.93). The effects of the initial concentration of cells in the suspension used to seed the PET matrix and the pore size of the matrix on the resulting seeding density and subsequent cell proliferation and tissue development were studied. Compared to the conventional static seeding method, the dynamic depth-filtration seeding method gave a significantly higher initial seeding density (2-4 x 10(7) vs 4 x 10(6) cells/cm3), more uniform cell distribution, and a higher final cell density in the tissue scaffold. The more uniform initial cell spatial distribution from the filtration seeding method also led to more cells in S phase and a prolonged proliferation period. However, both uniform spatial cell distribution and the pore size of the matrices are important to cell proliferation and morphological development in the seeded tissue scaffold. Large-pore matrices led to the formation of cell aggregates and thus might reduce cell proliferation. The dynamic depth-filtration seeding method is better in providing a higher initial seeding density and more uniform cell distribution and is easier to apply to large tissue scaffolds. A depth-filtration model was also developed and can be used to simulate the seeding process and to predict the maximum initial seeding densities in matrices with different porosities.  相似文献   

14.
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering.  相似文献   

15.
Cardiac tissue engineering has evolved as a potential therapeutic approach to assist in cardiac regeneration. We have recently shown that tissue-engineered cardiac graft, constructed from cardiomyocytes seeded within an alginate scaffold, is capable of preventing the deterioration in cardiac function after myocardial infarction in rats. The present article addresses cell seeding within porous alginate scaffolds in an attempt to achieve 3D high-density cardiac constructs with a uniform cell distribution. Due to the hydrophilic nature of the alginate scaffold, its >90% porosity and interconnected pore structure, cell seeding onto the scaffold was efficient and short, up to 30 min. Application of a moderate centrifugal force during cell seeding resulted in a uniform cell distribution throughout the alginate scaffolds, consequently enabling the loading of a large number of cells onto the 3D scaffolds. The percent cell yield in the alginate scaffolds ranged between 60-90%, depending on cell density at seeding; it was 90% at seeding densities of up to 1 x 10(8) cells/cm(3) scaffold and decreased to 60% at higher densities. The highly dense cardiac constructs maintained high metabolic activity in culture. Scanning electron microscopy revealed that the cells aggregated within the scaffold pores. Some of the aggregates were contracting spontaneously within the matrix pores. Throughout the culture there was no indication of cardiomyocyte proliferation within the scaffolds, nor was it found in 3D cultures of cardiofibroblasts. This may enable the development of cardiac cocultures, without domination of cardiofibroblasts with time.  相似文献   

16.
The requirements for engineering clinically sized cardiac constructs include medium perfusion (to maintain cell viability throughout the construct volume) and the protection of cardiac myocytes from hydrodynamic shear. To reconcile these conflicting requirements, we proposed the use of porous elastomeric scaffolds with an array of channels providing conduits for medium perfusion, and sized to provide efficient transport of oxygen to the cells, by a combination of convective flow and molecular diffusion over short distances between the channels. In this study, we investigate the conditions for perfusion seeding of channeled constructs with myocytes and endothelial cells without the gel carrier we previously used to lock the cells within the scaffold pores. We first established the flow parameters for perfusion seeding of porous elastomer scaffolds using the C2C12 myoblast line, and determined that a linear perfusion velocity of 1.0 mm/s resulted in seeding efficiency of 87% ± 26% within 2 hours. When applied to seeding of channeled scaffolds with neonatal rat cardiac myocytes, these conditions also resulted in high efficiency (77.2% ± 23.7%) of cell seeding. Uniform spatial cell distributions were obtained when scaffolds were stacked on top of one another in perfusion cartridges, effectively closing off the channels during perfusion seeding. Perfusion seeding of single scaffolds resulted in preferential cell attachment at the channel surfaces, and was employed for seeding scaffolds with rat aortic endothelial cells. We thus propose that these techniques can be utilized to engineer thick and compact cardiac constructs with parallel channels lined with endothelial cells. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

17.
Cell seeding and attachment in three-dimensional scaffolds is a key step in tissue engineering with implications for cell differentiation and tissue development. In this work, two new seeding methods were investigated using human chondrocytes and polyglycolic acid (PGA) fibrous mesh scaffolds. A simple semi-static seeding method using culture plates and tissue flasks was developed as an easy-to-perform modification of static seeding. An alginate-loading method was also studied, using alginate hydrogel as an adjuvant for entrapping cells within PGA scaffolds. Both the semi-static and PGA-alginate methods produced more homogeneous cell distributions than conventional static and dynamic seeding. Using 20 × 10(6) cells, whereas the seeding efficiency for static seeding was only 52%, all other techniques produced seeding efficiencies of ≥ 90%. With 40 × 10(6) cells, the efficiency of semi-static seeding declined to 74% while the dynamic and PGA-alginate methods retained their ability to accommodate high cell numbers. The seeded scaffolds were cultured in recirculation bioreactors to determine the effect of seeding method on cartilage production. Statically seeded scaffolds did not survive the 5-week cultivation period. Deposition of extracellular matrix in scaffolds seeded using the semi-static and PGA-alginate methods was more uniform compared with scaffolds seeded using the dynamic method. The new semi-static and PGA-alginate seeding methods developed in this work are recommended for tissue engineering because they provide substantial benefits compared with static seeding in terms of seeding efficiency, cell distribution, and cartilage deposition while remaining simple and easy to execute.  相似文献   

18.
The process of cell seeding on biocompatible scaffolds has a major impact on the morphological evolution of an engineered tissue because it involves all the key factors of tissue formation: cells, matrix, and their mutual interactions. In order to characterize the efficiency of cell seeding techniques, mainly static parameters are used such as cell density, cell distribution, and cell viability. Here, we present an experimental model that incorporates an optical density meter providing real-time information on the cell seeding velocity, a relevant dynamic parameter of cell–matrix interaction. Our setup may be adapted to fit various cell seeding protocols. A modified fluorimetric cuvette is used as bioreactor culture flask. The optical density of the magnetically stirred cell suspension is recorded by a digital optoelectronic device. We performed calibration experiments in order to prove that, in our experimental conditions, optical density depends linearly on the number of cells in the unit volume of suspension. Control studies showed that, during the time course of a typical experiment (up to 10 h), the cells (murine 3T3 fibroblasts) neither aggregated nor adhered significantly to the walls of the cuvette. Hence, our setup yields the number of cells attached to the scaffold as a function of time. In order to analyze the experimental seeding curves, we built a kinetic model based on Langmuir’s adsorption theory, which was extended to include a preliminary step of integrin function recovery. We illustrate the proposed approach by two sets of experiments that involved trypsin–EDTA or only EDTA treatment (no trypsin) used to detach the cells from the culture flasks. The data indicate that in both cases cell–matrix adhesion has a sequential, two-step dynamics, but kinetic parameters and attachment site availability depend on the experimental protocol.  相似文献   

19.
Three‐dimensional (3D) cell cultures have many advantages over two‐dimensional cultures. However, seeding cells in 3D scaffolds such as nonwoven fibrous polyethylene terephthalate (PET) matrices has been a challenge task in tissue engineering and cell culture bioprocessing. In this study, a centrifugal seeding method was investigated to improve the cell seeding efficiency in PET matrices with two different porosities (93% and 88%). Both the centrifugal force and centrifugation time were found to affect the seeding efficiency. With an appropriate centrifugation speed, a high 80?90% cell seeding efficiency was achieved and the time to reach this high seeding efficiency was less than 5 min. The seeding efficiency was similar for matrices with different porosities, although the optimal seeding time was significantly shorter for the low‐porosity scaffold. Post seeding cell viability was demonstrated by culturing colon cancer cells seeded in PET matrices for over 5 days. The centrifugal seeding method developed in this work can be used to efficiently and uniformly seed small fibrous scaffolds for applications in 3D cell‐based assays for high‐throughput screening. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
The combination of perfusion bioreactors with porous scaffolds is beneficial for the transport of cells during cell seeding. Nonetheless, the fact that cells penetrate into the scaffold pores does not necessarily imply the interception of cells with scaffold substrate and cell attachment. An in vitro perfusion system was built to relate the selected flow rate with seeding efficiency. However, the in vitro model does not elucidate how the flow rate affects the transport and deposition of cells onto the scaffold. Thus, a computational model was developed mimicking in vitro conditions to identify the mechanisms that bring cells to the scaffold from suspension flow. Static and dynamic cell seeding configurations were investigated. In static seeding, cells sediment due to gravity until they encounter the first obstacle. In dynamic seeding, 12, 120 and 600 \(\upmu \hbox {l/min}\) flow rates were explored under the presence or the absence of gravity. Gravity and secondary flow were found to be key factors for cell deposition. In vitro and in silico seeding efficiencies are in the same order of magnitude and follow the same trend with the effect of fluid flow; static seeding results in higher efficiency than dynamic perfusion although irregular spatial distribution of cells was found. In dynamic seeding, 120 \(\upmu \hbox {l/min}\) provided the best seeding results. Nevertheless, the perfusion approach reports low efficiencies for the scaffold used in this study which leads to cell waste and low density of cells inside the scaffold. This study suggests gravity and secondary flow as the driving mechanisms for cell-scaffold deposition. In addition, the present in silico model can help to optimize hydrodynamic-based seeding strategies prior to experiments and enhance cell seeding efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号