首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of the carbohydrate chain and two phosphate moieties on heat-induced aggregation of hen ovalbumin. The dephosphorylated form of ovalbumin was obtained by treating the original protein with acid phosphatase. The single carbohydrate chain was removed by digestion of heat-denatured ovalbumin with glycopeptidase F, and the resulting polypeptide without this carbohydrate chain was correctly refolded to acquire protease-resistance. Thermal unfolding can be approximated by a mechanism involving a two-state transition between the folded and unfolded states with a midpoint temperature of 76 °C for the original form, of 74 °C for the dephosphorylated form, and of 71 °C for the carbohydrate-free form. The conformational stability of the original form was higher than that of the carbohydrate-free form. When the three forms of ovalbumin were heated to 80 °C and then cooled rapidly in an ice bath, the polypeptide chains were compactly collapsed to metastable intermediates with secondary structures whose properties were indistinguishable. Upon incubation at 60 °C, renaturation was possible for a large portion of the intermediates of the original form, but for only a small portion of those of the carbohydrate-free form. Light scattering experiments showed that in the presence of sulfate anions, the intermediates of the carbohydrate-free form aggregated to a greater extent than did those of the original form. The intermediates of the carbohydrate-free form bound to the chaperonin GroEL with about 10-fold higher affinity than those of the original form. It follows that the carbohydrate chain and the two phosphate moieties do not affect hydrophobic collapse in the kinetic refolding of hen ovalbumin but play an important role in the slow rearrangement. They block the off-pathway reaction that competes with correct refolding by effectively decreasing surface hydrophobicity.  相似文献   

2.
1. Ovalbumin was fractionated to six fractions according to their phosphate content by high performance anion exchange chromatography. 2. This method was applied to analyze the phosphate content of ovalbumin subfractions having different carbohydrate chain from each other which were prepared by concanavalin A/Sepharose chromatography from oviduct slices incubated with [2-3H]mannose. 3. Most biosynthetic intermediates bearing a carbohydrate chain of Man8 or 9 GlcNAc2 was not phosphorylated while other fractions bearing differently processed carbohydrate chains such as Man5 or 6 GlcNAc2 or hybrid type carbohydrate chain was phosphorylated at their peptide portion.  相似文献   

3.
Carboxypeptidase Y, localized in the lysosome-like yeast vacuole, has been metabolically labeled with [2-3H]mannose. After immunoprecipitation the carbohydrate moieties were released by treatment with endo-β-N-acetyl-glucosaminidase H and separated by paper electrophoresis. Evidence for the presence of phospho-monoester and -diester groups in the molecule has been obtained. In the latter phosphate links C-1 of mannose or of mannosyl 1,3-mannose to C-6 of a mannose residue within a larger oligomannose moiety. In the presence of tunicamycin yeast cells synthesize a carbohydrate-free carboxypeptidase Y, which could be traced after metabolic labeling with [14C]-phenylalanine. The carbohydrate-free enzyme was segregated into the vacuoles to the same extent as the intact glycoprotein.  相似文献   

4.
Serine proteinase inhibitors (serpins) are believed to fold in vivo into a metastable "stressed" state with cleavage of their P1-P1' bond resulting in reactive center loop insertion and a thermostable "relaxed" state. To understand this unique folding mechanism, we investigated the refolding processes of the P1-P1'-cleaved forms of wild type ovalbumin (cl-OVA) and the R339T mutant (cl-R339T). In the native conditions, cl-OVA is trapped as the stressed conformer, whereas cl-R339T attains the relaxed structure. Under urea denaturing conditions, these cleaved proteins completely dissociated into the heavy (Gly(1)-Ala(352)) and light (Ser(353)-Pro(385)) chains. Upon refolding, the heavy chains of both proteins formed essentially the same initial burst refolding intermediates and then reassociated with the light chain counterparts. The reassociated intermediates both refolded into the native states with indistinguishable kinetics. The two refolded proteins, however, had a notable difference in thermostability. cl-OVA refolded into the stressed form with T(m) = 68.4 degrees C, whereas cl-R339T refolded into the relaxed form with T(m) = 85.5 degrees C. To determine whether cl-R339T refolds directly to the relaxed state or through the stressed state, conformational analyses by anion-exchange chromatography and fluorescence measurements were executed. The results showed that cl-R339T refolds first to the stressed conformation and then undergoes the loop insertion. This is the first demonstration that the P1-P1'-cleaved serpin peptide capable of loop insertion refolds to the stressed conformation. This highlights that the stressed conformation of serpins is an inevitable intermediate state on the folding pathway to the relaxed structure.  相似文献   

5.
We describe a new method for the transfer of carbohydrate moieties to polypeptides in which complex carbohydrate, in the form of glycosyl amino acid, is removed from an available glycoprotein, derivatized, and reacted with a polypeptide via an iodoacetylated alpha-amino group. A family of oligomannose chains, N-linked to the side chain of Asn, was obtained from ovalbumin by pronase digestion and purified as previously described. A reactive sulfhydryl group was specifically placed on these molecules by reaction of 2-iminothiolane with the Asn alpha-amino group. Separately, the alpha-amino group of the peptide GGYR was specifically iodoacetylated by reaction with iodoacetic anhydride at pH 6. Reaction of the thiol-containing carbohydrate with iodoacetylated peptide at pH 8 gave in high yield the corresponding oligomannosyl-peptides, whose structures were confirmed by mass spectrometry. A peptide inhibitor of HIV protease was also oligomannosylated by this procedure. The principle advantage of this method is the efficiency of the reaction even when performed with stoichiometric amounts of the two molecules at low concentration. It should be feasible to extend this chemistry to larger polypeptides.  相似文献   

6.
Yeast invertase exists in two different forms. The cytoplasmic enzyme is nonglycosylated, whereas the external invertase contains about 50% carbohydrate of the high mannose type. The protein moieties of both enzymes are identical. The two invertases have been used previously as a model system to investigate the influence of covalently linked carbohydrate chains on the stability of large glycoproteins, and controversial results were obtained. Here, we measured thermal and denaturant-induced unfolding by various probes, such as the loss of enzymatic activity, and by the changes in absorbance and fluorescence. The ranges of stability of the two invertases were found to be essentially identical, indicating that the presence of a high amount of carbohydrate does not significantly contribute to the stability of external invertase. Earlier findings that invertase is stabilized by glycosylation could not be confirmed. The stability of this glycoprotein is apparently determined by the specific interactions of the folded polypeptide chain. Unlike the glycosylated form, the carbohydrate-free invertase is prone to aggregation in the denatured state at high temperature and in a partially unfolded form in the presence of intermediate concentrations of guanidinium chloride.  相似文献   

7.
M T Everitt  H Neurath 《Biochimie》1979,61(5-6):653-662
An alpha-chymotrypsin-like enzyme was isolated from mast cells of the rat peritoneal cavity by extraction with 0.8 M potassium phosphate, 2 per cent protamine sulfate followed by affinity chromatography on hen ovoinhibitor-agarose and adsorption on barium sulfate. This procedure yielded over 9 mg of protease from the peritoneal lavage fluid of 100 rats, equivalent to 44 per cent of the initial activity. The purified protein was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, analytical isoelectric focusing, and amino-terminal sequence analysis. The protease contains no covalently bound carbohydrate and has a molecular weight of approximately 26,000. The enzyme molecule is a single polypeptide chain with an amino-terminal sequence homologous to that of the B chain of bovine alpha-chymotrypsin. The kinetic parameters, Km and kcat, for the hydrolysis of N-benzoyl-L-tyrosine ethyl ester were determined at pH 8.0 and 25 degrees C as 1.1 X 10(-3) M and 84 sec-1, respectively. The value of the second-order rate constant for inactivation of mast cell protease by diisopropylphosphofluoridate was 300 times lower than for bovine alpha-chymotrypsin.  相似文献   

8.
The role of asparagine-linked oligosaccharides for the mechanism of protein folding was investigated. We compared the stability and folding kinetics for two sets of pancreatic ribonucleases (RNases) with identical amino acid sequences and differences in glycosylation. First the folding of RNases A (carbohydrate free) and B (a single N-linked oligosaccharide) from bovine pancreas was investigated. The kinetics of refolding were identical under a wide range of conditions. The rate of unfolding by guanidinium chloride was decreased in RNase B. In further experiments the folding of porcine RNase (three carbohydrate chains at Asn-21, -34, and -76) was compared with the corresponding data for the deglycosylated protein. Even for this RNase with almost 40% carbohydrate content the mechanism of refolding is independent of glycosylation. Although the folding mechanism is conserved, the rates of individual steps in folding are decreased about 2-fold upon deglycosylation. We interpret this to originate from a slight destabilization of folding intermediates by carbohydrate depletion. In control experiments with nonglycosylated bovine RNase A it was ascertained that treatment with HF (as used for deglycosylation) did not affect the folding kinetics. The in vitro folding mechanism of glycosylated RNases apparently does not depend on the presence of N-linked oligosaccharide chains. The information for the folding of glycoproteins is contained exclusively in the protein moiety, i.e. in the amino acid sequence. Carbohydrate chains are attached at chain positions which remain solvent exposed. This ensures that the presence of oligosaccharides does not interfere with correct folding of the polypeptide chain.  相似文献   

9.
To investigate the role of the carbohydrate chain of hen egg ovalbumin (OVA), potential N-glycosylation site-deletion OVA mutants were expressed in yeast. The secretion level of the N292Q and N292/311Q mutants was greatly reduced compared with the wild-type OVA. Furthermore, secretion of the mutants without a carbohydrate chain on Asn-292 could hardly be detected in the culture medium, even if an additional N-glycosylation site was introduced to the OVA molecule. The reduction in secretion level seems to be due to incorrectly folded protein. Moreover, the secretion levels of the wild-type and N311Q mutant reduced in a similar extent as those of the mutants without a carbohydrate chain on Asn-292 in calnexin-disrupted yeast. These results indicate that the carbohydrate chain attached to Asn-292 of OVA has an important role for the secretion and folding in the cells.  相似文献   

10.
Ovalbumin, a member of the serpin superfamily, is transformed into a thermostabilized form, S-ovalbumin, during storage of shell eggs or by an alkaline treatment of the isolated protein (DeltaT(m)=8 degrees C). As structural characteristics of S-ovalbumin, three serine residues (Ser164, Ser236 and Ser320) take the D-amino acid residue configuration, while the conformational change from non-thermostabilized native ovalbumin is very small. To assess the role of the structural characteristics on protein thermostabilization, ovalbumin and S-ovalbumin were denatured to eliminate the conformational modulation effects and then refolded. The denatured ovalbumin and S-ovalbumin were correctly refolded into the original non-denatured forms with the corresponding differential thermostability. There was essentially no difference in the disulfide structures of the native and refolded forms of ovalbumin and S-ovalbumin. These data are consistent with the view that the configuration inversion, which is the only chemical modification directly detected in S-ovalbumin so far, plays a central role in ovalbumin thermostabilization. The rate of refolding of S-ovalbumin was greater than that of ovalbumin, indicating the participation, at least in part, of an increased folding rate for thermodynamic stabilization.  相似文献   

11.
Immunochemical methods have been used to examine the conformational properties of the entire polypeptide chain in the various trapped intermediate states which are kinetically important in the unfolding and refolding of pancreatic trypsin inhibitor. The interactions of each of the trapped intermediates, having their disulphide bonds frozen, with antibodies specific for either the native, folded or the reduced, unfolded states of the entire protein have been used to determine the probabilities of the various segments of the polypeptide chain adopting either conformation recognized by the antibodies.The results are considered with regard to the kinetic roles of the various species and to their conformational properties during folding and unfolding inferred from the observed propensities of each of the six cysteine residues to participate in disulphide bond formation, interchange, or breakage. It is concluded that no segment of the polypeptide chain adopts a stable native-like conformation until the entire polypeptide chain is able to do so simultaneously. The best correlation of conformation with the kinetic role in refolding of the intermediates is observed not with their propensity to adopt native-like conformation, but with their stability to full unfolding as measured by their interaction with antibodies against the reduced protein.  相似文献   

12.
Refolding of hen egg white lysozyme after pressure unfolding was measured by FTIR spectroscopy. The high-pressure treatment was found to be useful for unfolding/refolding studies because pressure acts against aggregation, and therefore no irreversible aggregation takes place during the pressure treatment. After the release of the pressure, folding intermediate structures were found which were formed during the decompression of the lysozyme. These were aggregation prone when heated, as indicated by their lower stability against aggregation. The intermediates were only formed if the protein was unfolded, subdenaturing pressures could not populate these intermediates. We introduced the notion of a superfunnel to describe the free energy landscape of interacting polypeptide chains. This can explain the propensity of folding intermediates to aggregate. A possible Gibbs-free energy landscape for lysozyme was constructed for the whole pressure-temperature plane.  相似文献   

13.
The recombinant ovalbumin (OVA) produced in yeast Pichia pastoris was purified from the culture medium by anion exchange chromatography, and its structural characteristics were compared with those of hen egg OVA, mainly from the point of view of posttranslational modification. The expressed OVA consisted of two molecular species immmunoreactive with antibody for hen egg OVA. The two molecular species, 45 and 47 kDa in molecular size, were thought to correspond to mono-glycosylated form and di-glycosylated form respectively. The non-glycosylated form was not produced in the system. The other posttranslational modifications (N-terminal acetylation and phosphorylation) observed in hen egg OVA were not detected in either of the molecular species. The two recombinant proteins displayed almost exactly the same circular dichroism and intrinsic tryptophan fluorescence spectra as hen egg OVA. The melting temperature, Tm, which was determined from the thermal unfolding curve, was almost identical in the two recombinant proteins, despite the difference in glycosylation levels, while it decreased by about 2.5 degrees C as compared with that of hen egg OVA (77.3 degrees C). These data indicate that the additional glycosylation to Asn-311 in the recombinant protein does not affect protein conformation or thermostability.  相似文献   

14.
A Fourier-transform infrared spectroscopic study of hen egg phosvitin and ovalbumin has been carried out. Bands arising from monoanionic and dianionic phosphate monoester [Shimanouchi, T., Tsuboi, M., & Kyogoku, Y. (1964) Adv. Chem. Phys. 8, 435-498] can be identified easily in the 1300-930 cm-1 region in spectra of solutions of O-phosphoserine and phosvitin, a highly phosphorylated protein. On the other hand, spectra of ovalbumin show a relatively strong absorption above 1000 cm-1 arising from the protein moiety. Below 1000 cm-1, a single band at 979 cm-1 is observed; this band is not present in spectra of dephosphorylated ovalbumin, and therefore, it has been assigned to the symmetric stretching of the phosphorylated Ser-68 and Ser-344 in the dianionic ionization state. In addition, bands arising from symmetric and antisymmetric stretchings of the monoanionic ionization state, and from the antisymmetric stretching of the dianionic state, can be detected above 1000 cm-1 in difference spectra of ovalbumin minus dephosphorylated ovalbumin. The effect of pH on the infrared spectra of O-phosphoserine, phosvitin, and ovalbumin is consistent with the phosphoserine residues undergoing ionization with pK values about 6. This study demonstrates that Fourier-transform infrared spectroscopy can be a useful technique to assess the ionization state of phosphoserine residues in proteins in solution.  相似文献   

15.
A variety of techniques, including quenched-flow hydrogen exchange labelling monitored by electrospray ionization mass spectrometry, and stopped-flow absorbance, fluorescence and circular dichroism spectroscopy, has been used to investigate the refolding kinetics of hen lysozyme over a temperature range from 2 degrees C to 50 degrees C. Simple Arrhenius behaviour is not observed, and although the overall rate of folding increases from 2 to 40 degrees C, it decreases above 40 degrees C. In addition, the transient intermediate on the major folding pathway at 20 degrees C, in which the alpha-domain is persistently structured in the absence of a stable beta-domain, is thermally unfolded in a sigmoidal transition (T(m) approximately 40 degrees C) indicative of a cooperatively folded state. At all temperatures, however, there is evidence for fast ( approximately 25 %) and slow ( approximately 75 %) populations of refolding molecules. By using transition state theory, the kinetic data from various experiments were jointly fitted to a sequential three-state model for the slow folding pathway. Together with previous findings, these results indicate that the alpha-domain intermediate is a productive species on the folding route between the denatured and native states, and which accumulates as a consequence of its intrinsic stability. Our analysis suggests that the temperature dependence of the rate constant for lysozyme folding depends on both the total change in the heat capacity between the ground and transition states (the dominant factor at low temperatures) and the heat-induced destabilization of the alpha-domain intermediate (the dominant factor at high temperatures). Destabilization of such kinetically competent intermediate species is likely to be a determining factor in the non-Arrhenius temperature dependence of the folding rate of those proteins for which one or more intermediates are populated.  相似文献   

16.
The chaperonin protein cpn60 from Escherichia coli protects the monomeric, mitochondrial enzyme rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1) against heat inactivation. The thermal inactivation of rhodanese was studied for four different states of the enzyme: native, refolded, bound to cpn60 in the form of a binary complex formed from unfolded rhodanese, and a thermally perturbed state. Thermal stabilization is observed in a range of temperatures from 25 to 48 degrees C. Rhodanese that had been inactivated by incubation at 48 degrees C, in the presence of cpn60 can be reactivated at 25 degrees C, upon addition of cpn10, K+, and MgATP. A recovery of about 80% was achieved after 1 h of the addition of those components. Thus, the enzyme is protected against heat inactivation and kept in a reactivable form if inactivation is attempted using the binary complex formed between rhodanese folding intermediate(s) and cpn60. The chaperonin-assisted refolding of urea-denatured rhodanese is dependent on the temperature of the refolding reaction. However, optimal chaperonin assisted refolding of rhodanese observed at 25 degrees C, which is achieved upon addition of cpn10 and ATP to the cpn60-rhodanese complex, is independent of the temperature of preincubation of the complex, that was formed previously at low temperature. The results are in agreement with a model in which the chaperonin cpn60 interacts with partly folded intermediates by forming a binary complex which is stable to elevated temperatures. In addition, it appears that native rhodanese can be thermally perturbed to produce a state different from that achieved by denaturation that can interact with cpn60.  相似文献   

17.
The folding of heat-denatured ovalbumin, a non-inhibitory serpin with a molecular size of 45 kDa, was examined. Ovalbumin was heat-denatured at 80 degrees C under nonreducing conditions at pH 7.5 and then cooled either slowly or rapidly. Slow cooling allowed the heat-denatured ovalbumin to refold to its native structure with subsequent resistance to digestion by trypsin. Upon rapid cooling, by contrast, the heat-denatured molecules assumed the metastable non-native conformations that were susceptible to trypsin. The non-native species were marginally stable for several days at a low temperature, but the molecules were transformed slowly into the native conformation. Considering data from size-exclusion chromatography and from analyses of CD, intrinsic tryptophan fluorescence, and adsorption of the dye 1-anilinonaphthalene-8-sulfonate, we postulated that the non-native species that accumulated upon rapid cooling were compact but structureless globules with disordered side chains collectively as a folding intermediate. Temperature-jumped CD experiments revealed biphasic kinetics for the refolding process of heat-denatured ovalbumin, with the features of increasing and subsequently decreasing amplitude of the rapid and the slow phases, respectively, with the decrease in folding temperature. The temperature dependence of the refolding kinetics indicated that the yield of renaturation was maximal at about 55 degrees C. These findings suggested the kinetic partitioning of heat-denatured ovalbumin between alternative fates, slow renaturation to the native state and rapid collapse to the metastable intermediate state. Analysis of disulfide pairing revealed the formation of a scrambled form with non-native disulfide interactions in both the heat-denatured state and the intermediate state that accumulated upon rapid cooling, suggesting that non-native disulfide pairing is responsible for the kinetic barriers that retard the correct folding of ovalbumin.  相似文献   

18.
The recovery of proteins following denaturation is optimal at low protein concentrations. The decrease in yield at high concentrations has been explained by the kinetic competition of folding and "wrong aggregation". In the present study, the renaturation-reoxidation of hen and turkey egg white lysozyme was used as a model system to analyze the committed step in aggregate formation. The yield of renatured protein for both enzymes decreased with increasing concentration in the folding process. In addition, the yield decreased with increasing concentrations of the enzyme in the denatured state (i.e., prior to its dilution in the renaturation buffer). The kinetics of renaturation of turkey lysozyme were shown to be very similar to those of hen lysozyme, with a half-time of about 4.5 min at 20 degrees C. The rate of formation of molecular species that lead to formation of aggregates (and therefore fail to renature) was shown to be rapid. Most of the reaction occurred in less than 5 s after the transfer to renaturation buffer, and after 1 min, the reaction was essentially completed. Yet, by observing the effects of the delayed addition of denatured hen lysozyme to refolding turkey lysozyme, it was shown that folding intermediates become resistant to aggregation only much more slowly, with kinetics indistinguishable from those observed for the appearance of native molecules. The interactions leading to the formation of aggregates were nonspecific and do not involve disulfide bonds. These observations are discussed in terms of possible kinetic and structural aspects of the folding pathway.  相似文献   

19.
Intermediates in the intracellular chain folding and association pathway of the P22 tailspike endorhamnosidase have been identified previously by physiological and genetic methods. Conditions have now been found for the in vitro refolding of this large (Mr = 215,000) oligomeric protein. Purified Salmonella phage P22 tailspikes, while very stable to urea in neutral solution, were dissociated by moderate concentrations of urea at acidic pH. The tailspike protein was denatured to unfolded polypeptide chains in 6 M urea, pH 3, as disclosed by analytical ultracentrifugation, fluorescence, and circular dichroism. Upon dilution into neutral buffer at 10 degrees C, the polypeptides fold spontaneously and associate to form trimeric tailspikes with high yield. Like native phage P22 tailspikes, the reconstitution product is resistant to denaturation by dodecyl sulfate in the cold and displays endorhamnosidase activity. Sedimentation coefficients, electrophoretic mobility, and fluorescence emission maxima of native and reconstituted tailspikes are identical within experimental error. By characterization of intermediates, localization of temperature-sensitive steps, and analysis of the effect of previously identified folding mutations, the reconstitution system described should allow comparison of in vivo and in vitro folding pathways of this large protein oligomer.  相似文献   

20.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号