共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cell Adhesion & Migration》2013,7(4):334-336
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules. 相似文献
2.
David W. Scott Caitlin E. Tolbert David M. Graham Erika Wittchen James E. Bear Keith Burridge 《Molecular biology of the cell》2015,26(18):3205-3214
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells. JAM-A serves many roles and contributes to barrier function and cell migration and motility, and it also acts as a ligand for the leukocyte receptor LFA-1. JAM-A is reported to contain N-glycans, but the extent of this modification and its contribution to the protein’s functions are unknown. We show that human JAM-A contains a single N-glycan at N185 and that this residue is conserved across multiple mammalian species. A glycomutant lacking all N-glycans, N185Q, is able to reach the cell surface but exhibits decreased protein half-life compared with the wild- type protein. N-glycosylation of JAM-A is required for the protein’s ability to reinforce barrier function and contributes to Rap1 activity. We further show that glycosylation of N185 is required for JAM-A–mediated reduction of cell migration. Finally, we show that N-glycosylation of JAM-A regulates leukocyte adhesion and LFA-1 binding. These findings identify N-glycosylation as critical for JAM-A’s many functions. 相似文献
3.
4.
5.
Planar cell polarity (PCP) is the coordinated organization of cells within the plane of the epithelium, first described in Drosophila. A Frizzled signalling pathway dedicated to PCP (the non-canonical Frizzled pathway) acts through Dishevelled and small G proteins, as does the classical Wnt pathway, but then diverges downstream of Dishevelled. Recent studies have demonstrated a crucial role for several atypical cadherin molecules (Fat, Dachsous and Flamingo) in controlling PCP signalling. Recent work has also indicated that the first sign of PCP during development is the polarized localization of PCP proteins (Frizzled, Flamingo, Dishevelled, etc). Exciting new data reveal that this PCP pathway is conserved to man. 相似文献
6.
In addition to mediating cell adhesion, many cell adhesion molecules act as tumor suppressors. These proteins are capable of restricting cell growth mainly through contact inhibition. Alterations of these cell adhesion molecules are a common event in cancer. The resulting loss of cell-cell and/or cell-extracellular matrix adhesion promotes cell growth as well as tumor dissemination. Therefore, it is conventionally accepted that cell adhesion molecules that function as tumor suppressors are also involved in limiting tumor cell migration. Paradoxically, in 2005, we identified an immunoglobulin superfamily cell adhesion molecule hepaCAM that is able to suppress cancer cell growth and yet induce migration. Almost concurrently, CEACAM1 was verified to co-function as a tumor suppressor and invasion promoter. To date, the reason and mechanism responsible for this exceptional phenomenon remain unclear. Nevertheless, the emergence of these intriguing cell adhesion molecules with conflicting roles may open a new chapter to the biological significance of cell adhesion molecules.Key words: hepaCAM, cell adhesion molecules, tumor suppressor, migration, E-cadherin, CADM1, integrin α7, CEACAM1It is well known that many cell adhesion molecules function as tumor suppressors (reviewed in ref. 1). These molecules exert their tumor suppressive effect mainly through cell-adhesion-mediated contact inhibition. Cell adhesion molecules allow cells to communicate with one another or to the extracellular environment by mediating cell-cell or cell-extracellular matrix (ECM) interactions (reviewed in refs. 2 and 3). Broadly, these proteins can be classified into five families including immunoglobulin superfamily, integrins, cadherins, selectins and CD44. Apart from participating in the development and maintenance of tissue architecture, cell adhesion molecules serve as cell surface receptors critical for capturing, integrating and transmitting signals from the extracellular milieu to the cell interior (reviewed in refs. 2 and 3). These signaling events are vital for the regulation of a wide variety of cellular functions including embryogenesis, immune and inflammatory responses, tissue repair, cell migration, differentiation, proliferation and apoptosis. Alterations of these cell adhesion molecules are a common event in cancer (reviewed in refs. 1, 2, 4 and 5). The disrupted cell-cell or cell-ECM adhesion significantly contributes to uncontrolled cell proliferation and progressive distortion of normal tissue architecture. More importantly, changes in cell adhesion molecules play a causal role in tumor dissemination. Loss of cell adhesion contacts allows malignant cells to detach and to escape from the primary mass. Gaining a more motile and invasive phenotype, these cells break down the ECM and eventually invade and metastasize to distal organs.Based on the above understanding, it is conventionally accepted that cell adhesion molecules with tumor suppressor activity, when expressed in cancer cells, are able to exert inhibitory effect on cell motility. The ability of cells in migration/motility is a prerequisite for cancer invasion and metastasis (reviewed in refs. 1 and 5). Indeed, a number of cell adhesion molecule-tumor suppressors have been reported to be capable of reducing cell migration. The most classical example is E-cadherin, a calcium-dependent cell adhesion molecule. E-cadherin is expressed exclusively in epithelial cells and its expression is commonly suppressed in tumors of epithelial origins. The cytoplasmic domain of E-cadherin interacts with catenins to establish an intracellular linkage with the actin cytoskeleton (reviewed in ref. 6). The assembly of E-cadherin with the cytoskeleton via catenins at the sites of adherens junctions is important for the stabilization of cell-cell adhesions. Disruption of E-cadherin-mediated cell-cell adhesion, due to loss of expression or function of E-cadherin and/or catenins, is assocated with tumor development and progression (reviewed in ref. 7). Forced expression of E-cadherin in several cancer cell lines not only slows down cell growth8,9 but also significantly reduces the invasiveness of the cells.10,11 On the other hand, inhibition of E-cadherin by function-blocking antibodies and antisense RNA restores the invasiveness in non-invasive transformed cells.11 Furthermore, using a transgenic mouse model of pancreatic beta-cell carcinogenesis, it has been demonstrated that E-cadherin-mediated cell adhesion is important in preventing the transition from well differentiated adenoma to invasive carcinoma.12Cell adhesion molecule 1 (CADM1), another example, has also been implicated in cancer progression. CADM1 is a member of the immunoglobulin superfamily and mediates cell-cell adhesion.13 The molecule associates with the actin cytoskeleton via the differentially expressed in adenocarcinoma of the lung (DAL1) protein; and the formation of CADM1-DAL1 complex is dependent on the integrity of actin cytoskeleton.14 Inactivation of the CADM1 and/or DAL1 gene usually through methylation has been reported in diverse human cancers.15,16 A paper by Ito et al. showed that restoration of CADM1 expression in esophageal squamous cell carcinoma cells not only suppresses cell growth, but also retards cell motility and invasion.16In contrast to E-cadherin and CADM1, integrin α7 is a cell-ECM adhesion molecule which also possesses tumor suppressor activity. Ren et al. showed that integrin α7 gene is mutated in several human malignances; and the mutations are associated with an increase in cancer recurrence.17 Forced expression of integrin α7 in integrin α7-deficient leiomyosarcoma cells results in decreased colony formation and slower cell motility. Conversely, knockdown of integrin α7 in lung cancer cells expressing wild-type integrin α7 increases the colony number and cell motility rate. In addition, the researchers revealed that mice bearing xenograft tumors overexpressing integrin α7 have reduced tumor size with no obvious metastasis.In 2005, we first reported the identification of a cell adhesion molecule belonging to the immunoglobulin superfamily, designated as hepaCAM.18 To date, we have shown that the gene is frequently downregulated in a variety of human cancers.18,19 Re-expression of hepaCAM in the hepatocellular carcinoma HepG2 cells18 and breast cancer MCF7 cells19 inhibits colony formation and retards cell proliferation. In addition, expression of hepaCAM in MCF7 cells results in cell cycle arrest at the G2/M phase and cellular senescence. Concurrently, the expression of several senescence-associated proteins including p53, p21 and p27 is enhanced. Moreover, downregulation of p53 by p53-specific small interfering RNA in cells expressing hepaCAM clearly reduces p21 without changing p27 and alleviates senescence, indicating that hepaCAM induces senescence through a p53/p21-dependent pathway.19 Together, the data suggest that hepaCAM is a tumor suppressor. Interestingly, the expression of hepaCAM in both HepG2 and MCF7 cells stimulates both cell-ECM adhesion and cell migration.18,20,21 The function of hepaCAM as a tumor suppressor in cell migration is contradictory to other cell adhesion molecule-tumor suppressors. Noteworthily, hepaCAM-mediated cell motility is evidenced by its direct interaction with the actin cytoskeleton.21Evidences are currently emerging to support the contradictory roles of cell adhesion molecules that both inhibit cell growth and promote cell motility when restored in cancer cells. In addition to hepaCAM, the immunoglobulin superfamily carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is implicated to function as a tumor suppressor and a metastasis promoter. The characteristics and functions of CEACAM1 have been demonstrated in individual reports. CEACAM1 is frequently downregulated or dysregulated in multiple human tumors,22–25 and is capable of suppressing cell growth and inducing apoptosis.26–28 Ebrahimnejad et al. demonstrated that exogenous expression of CEACAM1 enhances melanoma cell invasion and migration; and this enhanced motility can be reverted by anti-CEACAM antibodies.29 The ability of CEACAM to co-stimulate tumor suppression and invasion was finally established by Liu et al. in restricting thyroid cancer growth but promoting invasiveness.30 Introduction of CEACAM1 into CEACAM1-deficient thyroid cancer cells results in G1/S phase cell cycle arrest accompanied by elevated p21 expression and diminished Rb phosphorylation. Overexpression of CEACAM1 also increases cell-ECM adhesion and promotes cell migration and tumor invasiveness. In xenografted mice, CEACAM1 expression results in reduced tumor growth but increased tumor invasiveness. Conversely, silencing of endogenous CEACAM1 accelerates tumor growth and suppresses invasiveness.30It is an exciting issue to address why a cell adhesion molecule is able to suppress tumor growth yet promote tumor progression. Could there be a molecular switch that controls the functions of the gene between a tumor suppressor and a migration promoter in cancer or are the functions executed simultaneously? The expression level, the extracellular cues as well as the interacting partners of the cell adhesion molecules may likely play a critical role in regulating its functions. The question is under what circumstances these factors come into play. To answer all these questions, and maybe more, on the intriguing findings of these proteins, more extensive and intensive experimentation is required. Nevertheless, it is obvious that the emergence of these cell adhesion molecules that function in a contradictory manner opens a new chapter to the biological significance of cell adhesion molecules. 相似文献
7.
Syndecan are a family of cell surface heparan sulfate proteoglycans that act as cell surface receptors. Most cell surface receptors have a limited number and type of ligand interactions, responding only to the binding of (a) specific ligand(s). In contrast, syndecans can interact with various numbers and types of ligands, and thus play more diverse roles than others. Various syndecan functions have not yet been fully classified and categorized, but we herein review previous studies suggesting that syndecans play dual function as cell surface receptors by acting as both adhesion receptors and docking receptors. Through this dual regulatory function, syndecans are capable of regulating both intra- and extracellular activities, potentially altering a variety of cell behaviors. 相似文献
8.
Numerous attempts to elucidate the strength of cadherin dimerization that mediates intercellular adhesion have produced controversial and inconclusive results. To clarify this issue, we compared E-cadherin dimerization on the surface of living cells with how the same process unfolds on agarose beads. In both cases, dimerization was monitored by the same site-specific cross-linking assay, greatly simplifying data interpretation. We showed that on the agarose surface under physiological conditions, E-cadherin produced a weak dimer that immediately dissociated after the depletion of calcium ions. However, either at pH 5 or in the presence of cadmium ions, E-cadherin produced a strong dimer that was unable to dissociate upon calcium depletion. Both types of dimers were W156-dependent. Remarkably, only the strong dimer was found on the surface of living cells. We also showed that the intracellular cadherin region, the clustering of which through catenins had been proposed as stabilizer of weak intercadherin interactions, was not needed, in fact, for cadherin junction assembly. Taken together, our data present convincing evidence that cadherin adhesion is based on high-affinity cadherin-cadherin interactions. 相似文献
9.
The repulsive guidance molecule A (RGMa) is a contact-mediated axon guidance molecule that has significant roles in central nervous system (CNS) development. Here we have examined whether RGMa has novel roles in cell migration and cell adhesion outside the nervous system. RGMa was found to stimulate cell migration from Xenopus animal cap explants in a neogenin-dependent and BMP-independent manner. RGMa also stimulated the adhesion of Xenopus animal cap cells, and this adhesion was dependent on neogenin and independent of calcium. To begin to functionally characterize the role of specific domains in RGMa, we assessed the migratory and adhesive activities of deletion mutants. RGMa lacking the partial von Willebrand factor type D (vWF) domain preferentially perturbed cell adhesion, while mutants lacking the RGD motif affected cell migration. We also revealed that manipulating the levels of RGMa in vivo caused major migration defects during Xenopus gastrulation. We have revealed here novel roles of RGMa in cell migration and adhesion and demonstrated that perturbations to the homeostasis of RGMa expression can severely disrupt major morphogenetic events. These results have implications for understanding the role of RGMa in both health and disease. 相似文献
10.
Katherine T. Bliss Miensheng Chu Colin M. Jones-Weinert Carol C. Gregorio 《Molecular biology of the cell》2013,24(7):995-1006
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2’s potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells—metastatic cancer cell lines—increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions. 相似文献
11.
12.
Maryam Azimzadeh Irani 《Molecular simulation》2018,44(9):743-748
Epidermal Growth Factor Receptor (EGFR) is a glycosylated tyrosine kinase receptor associated with several cancers. EGFR plays an important role in cancer therapy and inspired several experimental and computational (molecular dynamics simulation) studies to investigate its function and dynamics. N-glycosylation is a critical aspect of EGFR functioning that was mainly unexplained until recently due to the challenges in obtaining and analysis of the structural data involving the glycan moieties. Latest simulations of glycosylated EGFR suggest atomistic mechanisms underlying the experimentally proposed functions of N-glycans in: EGFR increased ligand binding, reduced flexibility and arrangement within the cell membrane. It was shown that the increase in the ligand binding of glycosylated EGFR is mediated by the interaction between the two glycans attached to the growth factor binding subdomains resulting in stabilization of the growth factor binding site. Persistent hydrogen bonds’ formation between the glycans and EGFR contributes to proper folding and reduced flexibly of the glycosylated receptor. Assembly of the cell-integrated EGFR and its relative distance from the membrane are acquired by the lift-up action of the attached glycans. These findings can be used as a framework for implementation of computational techniques to obtain atomistic details of protein glycosylation as one of the most important areas of structural biology. 相似文献
13.
14.
Runx1 (also known as AML1, Cbfa2 and Pebpa2b) and Cbfb encode a DNA-binding alpha subunit and the non-DNA-binding beta subunit of a mammalian core-binding factor (CBF). The discovery of RUNX1 and CBFB as genes rearranged in human leukemias prompted predictions that both genes would play important roles in normal hematopoiesis. These predictions were borne out, as indeed Runx1 and its Xenopus and Drosophila homologs, Xaml and lozenge (lz), appear to determine hematopoietic cell fate during development. We will review what is known about Runx1 function in hematopoiesis in three model organisms, mouse, frog and fly, focusing on the earliest events of hematopoietic cell emergence in the embryo. 相似文献
15.
The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors 总被引:4,自引:0,他引:4
Nectins are Ca(2+)-independent Ig-like cell adhesion molecules (CAMs) which homophilically and heterophilically interact in trans with nectins and form cell-cell adhesion. This cell-cell adhesion is involved in the formation of many types of cell-cell junctions such as adherens junctions, tight junctions, and synaptic junctions, cooperatively with other CAMs such as cadherins and claudins. Nectins transduce signals cooperatively with integrin alpha(v)beta(3), and regulate formation of cell-cell junctions. In addition, nectin interacts in cis with PDGF receptor and regulates its signaling for anti-apoptosis. Furthermore, nectin interacts in trans with nectin-like molecule-5 (Necl-5) and regulate cell movement and proliferation. We describe cooperative roles of nectins with other CAMs and growth factor receptors. 相似文献
16.
《Cell Adhesion & Migration》2013,7(4):527-540
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN’s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin’s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions. 相似文献
17.
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN''s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin''s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions.Key words: focal adhesion, tyrosine phosphorylation, bombesin, adhesion, spreading 相似文献
18.
Background
Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. 相似文献19.
Yunfei Lee Miaoxing Wang Kousuke Imamura Makoto Sato 《Development, growth & differentiation》2023,65(1):37-47
The Drosophila visual center shows columnar structures, basic structural and functional units of the brain, that are shared with the mammalian cerebral cortex. Visual information received in the ommatidia in the compound eye is transmitted to the columns in the brain. However, the developmental mechanisms of column formation are largely unknown. The Irre Cell Recognition Module (IRM) proteins are a family of immunoglobulin cell adhesion molecules. The four Drosophila IRM proteins are localized to the developing columns, the structure of which is affected in IRM mutants, suggesting that IRM proteins are essential for column formation. Since IRM proteins are cell adhesion molecules, they may regulate cell adhesion between columnar neurons. To test this possibility, we specifically knocked down IRM genes in columnar neurons and examined the defects in column formation. We developed a system that automatically extracts the individual column images and quantifies the column shape. Using this system, we demonstrated that IRM genes play critical roles in regulating column shape in a core columnar neuron, Mi1. We also show that their expression in the other columnar neurons, Mi4 and T4/5, is essential, suggesting that the interactions between IRM proteins and multiple neurons shape the columns in the fly brain. 相似文献
20.
Expression of laminins 1 and 10 in carcinoma cells and comparison of their roles in cell adhesion 总被引:5,自引:0,他引:5
The expression pattern of laminin (Ln) alpha1 chain has been a controversial topic due to discrepancies between mRNA and protein studies. Recently it was reported that the monoclonal antibody 4C7, previously thought to recognize Ln alpha1 chain, actually detects Ln alpha5 chain. This finding makes it necessary to reestimate the role of Ln alpha1 chain and to compare the expression and functions of Ln alpha1 and alpha5 chains. We studied the expression of Ln alpha1 and alpha5 chains and production of Ln-1 and Ln-10 in cultured human carcinoma cells. Ln alpha1 chain mRNA was detected in JAR choriocarcinoma cells and in all four renal cell carcinoma cell lines studied. In contrast, pancreatic, colon, and lung alveolar carcinoma cell lines did not express or produce Ln alpha1 chain, suggesting that Ln-1 (alpha1 beta1 gamma1) is produced only by certain carcinoma cells. Ln alpha5 chain mRNA was expressed in all carcinoma cells, but was not incorporated into extracellular matrix in vitro, as shown with JAR cells. Immunoprecipitation of metabolically labeled cells showed that cells expressing Ln alpha1 mRNA also produced 400-kDa Ln alpha1 chain, whereas all cells produced 380-kDa Ln alpha5 chain. Adhesion to Ln-1 was inhibited by a functionally blocking antibody against alpha6-integrin subunit, whereas adhesion to Ln-10 was inhibited by an antibody against alpha6-integrin in JAR cells and by an antibody against alpha3-integrin in PANC-1 cells. The results suggest that Ln-10 is a ubiquitously expressed Ln isoform in carcinoma cells, and the mechanism of adhesion to Ln-10 is cell-type specific. 相似文献