首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Petri B  Bixel MG 《The FEBS journal》2006,273(19):4399-4407
The recruitment of leukocytes from the circulation into tissues requires leukocyte migration through the vascular endothelium. The mechanisms by which leukocytes attach and firmly adhere to the endothelial cell surface have been studied in detail. However, much less is known about the last step in this process, the diapedesis of leukocytes through the vascular endothelium. This minireview focuses on the interactions between leukocyte and endothelial cell adhesion molecules that are important during leukocyte extravasation. In the past few years a series of endothelial cell surface and adhesion molecules have been identified that are located at endothelial cell contacts and found to participate in leukocyte diapedesis. These junctional cell adhesion molecules are believed to have an active role in controlling the opening and closure of endothelial cell contacts to allow the passage of leukocytes between adjacent endothelial cells. Alternatively, leukocytes can cross the endothelium at nonjunctional locations, with leukocytes migrating through a single endothelial cell. Further work is clearly needed to understand, in greater detail, the molecular mechanisms that allow leukocytes to cross the endothelium via either the paracellular or the transcellular pathway.  相似文献   

2.
Attachment of leukocytes to the blood vessel wall initiates leukocyte extravasation. This enables leukocytes to migrate to and accumulate at sites of tissue injury or infection where they execute host-defense mechanisms. A series of vascular cell adhesion molecules on leukocytes and on endothelial cells mediate leukocyte attachment to the endothelium in a stepwise process. A large panel of about 40 known human chemokines is able to specifically activate certain leukocytes and attract them to migrate across the endothelial barrier and within tissue. The specific combination of molecular signals provided by the diversity of cytokines, adhesion molecules, and chemokines regulates the specificity and selectivity of the recruitment of certain subpopulations of leukocytes in vivo. This review will focus on selectins and chemokines which initiate the cell contact and regulate activation and chemoattraction of leukocytes. Accepted: 20 May 1999  相似文献   

3.
Putative dual role of ephrin-Eph receptor interactions in inflammation   总被引:1,自引:0,他引:1  
Inflammation is associated with a decreased adhesion between endothelial cells in blood vessels and an increased adhesion of circulating leukocytes to vascular endothelium and to epithelia of internal organs. These changes lead to leukocyte extravasation and tissue transmigration. We propose that ephrins and Eph receptors play important, but underappreciated, signaling roles in these processes. At early stages of inflammation, EphA2 receptor and ephrin-B2 are overexpressed in endothelial and epithelial cells, thus leading to those events (expression of adhesion molecules on the cell surface and reorganization of the intracellular cytoskeleton) that cause cell repulsion and disruption of endothelial and epithelial barriers. At later stages of inflammation, expression of EphA1, EphA3, EphB3, and EphB4 on leukocytes and endothelial cells decreases, thus promoting adhesion of leukocytes to endothelial cells. Taking into consideration the abundance of ephrins and Eph receptors in tissues and the robustness of their signaling effects, the proposed involvement is likely to be substantial and may constitute a novel therapeutic target.  相似文献   

4.
内皮细胞间连接的研究进展   总被引:3,自引:0,他引:3  
内皮细胞形成了大分子物质和循环细胞从知液到细胞的最主要屏障,内皮细胞的通航性主要是通过内皮细胞间连接进行调控的,本文从内容细胞间连接的几种方式,信号的传导,连接变化的调控,篾这中液体的流动及中性粒细胞渗出对内皮细胞间连接的影响进行阐述,讨论了目前内皮细胞间连接的研究进展,提出内皮细胞间连接和骨架结构对血管通透性的调控,中性粒细胞的渗出和血管内皮细胞间连接的重建都具有非常重要的作用,其中内皮细胞的渗  相似文献   

5.
The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. Thus, metastasis formation is indirectly susceptible to localization signals that are literally specific for the immune system. We herein compare the extravasation of leukocytes and tumor cells with regard to the involved receptors and the localization signals that direct the cells to certain organs and sites of the body.  相似文献   

6.
At sites of inflammation, infection or vascular injury local proinflammatory or pathogen-derived stimuli render the luminal vascular endothelial surface attractive for leukocytes. This innate immunity response consists of a well-defined and regulated multi-step cascade involving consecutive steps of adhesive interactions between the leukocytes and the endothelium. During the initial contact with the activated endothelium leukocytes roll along the endothelium via a loose bond which is mediated by selectins. Subsequently, leukocytes are activated by chemokines presented on the luminal endothelial surface, which results in the activation of leukocyte integrins and the firm leukocyte arrest on the endothelium. After their firm adhesion, leukocytes make use of two transmigration processes to pass the endothelial barrier, the transcellular route through the endothelial cell body or the paracellular route through the endothelial junctions. In addition, further circulating cells, such as platelets arrive early at sites of inflammation contributing to both coagulation and to the immune response in parts by facilitating leukocyte–endothelial interactions. Platelets have thereby been implicated in several inflammatory pathologies. This review summarizes the major mechanisms and molecules involved in leukocyte–endothelial and leukocyte-platelet interactions in inflammation.  相似文献   

7.
Inflammatory leukocytes infiltrate the CNS parenchyma in neuroinflammation. This involves cellular migration across various structures associated with the blood-brain barrier: the vascular endothelium, the glia limitans, and the perivascular space between them. Leukocytes accumulate spontaneously in the perivascular space in brains of transgenic (Tg) mice that overexpress CCL2 under control of a CNS-specific promoter. The Tg mice show no clinical symptoms, even though leukocytes have crossed the endothelial basement membrane. Pertussis toxin (PTx) given i.p. induced encephalopathy and weight loss in Tg mice. We used flow cytometry, ultra-small superparamagnetic iron oxide-enhanced magnetic resonance imaging, and immunofluorescent staining to show that encephalopathy involved leukocyte migration across the glia limitans into the brain parenchyma, identifying this as the critical step in inducing clinical symptoms. Metalloproteinase (MPs) enzymes are implicated in leukocyte infiltration in neuroinflammation. Unmanipulated Tg mice had elevated expression of tissue inhibitor of metalloproteinase-1, matrix metalloproteinase (MMP)-10, and -12 mRNA in the brain. PTx further induced expression of tissue inhibitor of metalloproteinase-1, metalloproteinase disintegrins-12, MMP-8, and -10 in brains of Tg mice. Levels of the microglial-associated MP MMP-15 were not affected in control or PTx-treated Tg mice. PTx also up-regulated expression of proinflammatory cytokines IL-1beta and TNF-alpha mRNA in Tg CNS. Weight loss and parenchymal infiltration, but not perivascular accumulation, were significantly inhibited by the broad-spectrum MP inhibitor BB-94/Batimastat. Our finding that MPs mediate PTx-induced parenchymal infiltration to the chemokine-overexpressing CNS has relevance for the pathogenesis of human diseases involving CNS inflammation, such as multiple sclerosis.  相似文献   

8.
Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also 'direct' leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues.  相似文献   

9.
Strey A  Janning A  Barth H  Gerke V 《FEBS letters》2002,517(1-3):261-266
Bacterial toxins affecting Rho activity in microvascular endothelial cells were employed to elucidate whether endothelial Rho participates in regulating the migration of monocytes across monolayers of cultured endothelial cells. Inactivation of Rho by the Clostridium C3 exoenzyme resulted in an increased adhesion of peripheral blood monocytes to the endothelium and a decreased rate of transendothelial monocyte migration. Cytotoxic necrotizing factor 1-mediated activation of endothelial Rho also reduced the rate of monocyte transmigration, but did not affect monocyte-endothelium adhesion. Thus, efficient leukocyte extravasation requires Rho signaling not only within the migrating leukocytes but also within the endothelial lining of the vessel wall.  相似文献   

10.
Leukocyte migration into and through tissues is fundamental to normal physiology, immunopathology and host defence. Leukocyte entry into the central nervous system (CNS) is restricted, in part, because of the blood-brain barrier (BBB). During the past decade, crucial components that are involved in the process of leukocyte migration have been identified and progress has been made in understanding the mechanisms of neuroinflammatory reactions. In this review, present knowledge of the trafficking determinants that guide the migration of leukocytes is superimposed onto the vascular and compartmental anatomy of the CNS. We discuss three distinct routes for leukocytes to enter the CNS and consider how different populations of leukocytes use trafficking signals to gain entry.  相似文献   

11.
The basic route and mechanisms for leukocyte migration across the endothelium remain poorly defined. We provide definitive evidence for transcellular (i.e., through individual endothelial cells) diapedesis in vitro and demonstrate that virtually all, both para- and transcellular, diapedesis occurs in the context of a novel "cuplike" transmigratory structure. This endothelial structure was comprised of highly intercellular adhesion molecule-1- and vascular cell adhesion molecule-1-enriched vertical microvilli-like projections that surrounded transmigrating leukocytes and drove redistribution of their integrins into linear tracks oriented parallel to the direction of diapedesis. Disruption of projections was highly correlated with inhibition of transmigration. These findings suggest a novel mechanism, the "transmigratory cup", by which the endothelium provides directional guidance to leukocytes for extravasation.  相似文献   

12.
We demonstrate an additional step and a positive feedback loop in leukocyte accumulation on inflamed endothelium. Leukocytes in shear flow bind to adherent leukocytes through L-selectin/ligand interactions and subsequently bind downstream and roll on inflamed endothelium, purified E-selectin, P-selectin, L-selectin, VCAM-1, or peripheral node addressin. Thus adherent leukocytes nucleate formation of strings of rolling cells and synergistically enhance leukocyte accumulation. Neutrophils, monocytes, and activated T cell lines, but not peripheral blood T lymphocytes, tether to each other through L-selectin. L- selectin is not involved in direct binding to either E- or P-selectin and is not a major counterreceptor of endothelial selectins. Leukocyte- leukocyte tethers are more tolerant to high shear than direct tethers to endothelial selectins and, like other L-selectin-mediated interactions, require a shear threshold. Synergism between leukocyte- leukocyte and leukocyte-endothelial interactions introduces novel regulatory mechanisms in recruitment of leukocytes in inflammation.  相似文献   

13.
L (leukocyte)-selectin (CD62L) and CD44 are major adhesion receptors that support the rolling of leukocytes on endothelium, the first step of leukocyte entry into inflamed tissue. The specific contribution of L-selectin or CD44 to the regulation of cell traffic to joints in arthritis has not been investigated. We used CD44-deficient, L-selectin-deficient, and CD44/L-selectin double knockout mice to determine the requirement for these receptors for inflammatory cell recruitment during Ag-induced arthritis. Intraperitoneal immunization resulted in similar activation status and Ag-specific responses in wild-type and gene-targeted mice. However, extravasation of neutrophil granulocytes, but not the emigration of T cells, into the knee joints after intra-articular Ag injection was significantly delayed in L-selectin-deficient and double knockout mice. Intravital videomicroscopy on the synovial microcirculation revealed enhanced leukocyte rolling and diminished adherence in mice lacking either CD44 or L-selectin, but CD44 deficiency had no significant effect on the recruitment of L-selectin-null cells. Compared with wild-type leukocytes, expression of L-selectin was down-regulated in CD44-deficient cells in the spleen, peripheral blood, and inflamed joints, suggesting that reduced expression of L-selectin, rather than the lack of CD44, could be responsible for the delayed influx of granulocytes into the joints of CD44-deficient mice. In conclusion, there is a greater requirement for L-selectin than for CD44 for neutrophil extravasation during the early phase of Ag-induced arthritis.  相似文献   

14.
Tissues respond to injury with inflammation in an effort to protect and repair the damaged site. During inflammation, leukocytes typically accumulate in response to certain chemicals produced within the tissue itself. The passage of leukocytes through the vascular lumen into tissues occurs in several phases, including rolling, activation, firm adhesion, transendothelial migration, and subendothelial migration. Although infiltration of eosinophil leukocytes is one of the most important aspects of allergic inflammatory reactions, eosinophils also participate in nonallergic inflammation. Eosinophil accumulation is regulated not only by endothelial adhesion molecules, but also by interactions between eosinophil adhesion molecules and extracellular matrix elements. This review summarizes the regulation of eosinophil leukocyte adhesion and migration. A better understanding of eosinophil recruitment responses may lead to the development of novel therapeutics for chronic allergic diseases.  相似文献   

15.
Recruitment of leukocytes circulating in our blood to the sites of infection or tissue damage is the key phenomenon in the acute inflammatory response(s). Among the leukocytes, neutrophils are primarily recruited into the areas of acute inflammation. When neutrophils interact with activated endothelium of the blood vessels, they become migratory and cross the endothelial layer of the blood vessel wall in a process called as leukocyte extravasation. Identifying and understanding the gene regulation of this extravasation phenomenon is one of the key objective of biomedical research aimed at ameliorating or alleviating the symptoms of various diseases, such as rheumatoid arthritis, asthma, anaphylaxis, atherosclerosis, ulcerative colitis etc., that are exacerbated by inappropriate inflammatory stimuli. Here, we decipher and discuss the key genes implicated in the leukocyte transmigration using the acute inflammation model called as the Dextran Sulphate Sodium (DSS) induced Colitis in mice as a classic paradigm.  相似文献   

16.
We studied whether circulating activated platelets and platelet-leukocyte aggregates cause the development of atherosclerotic lesions in apolipoprotein-E-deficient (Apoe(-/-)) mice. Circulating activated platelets bound to leukocytes, preferentially monocytes, to form platelet-monocyte/leukocyte aggregates. Activated platelets and platelet-leukocyte aggregates interacted with atherosclerotic lesions. The interactions of activated platelets with monocytes and atherosclerotic arteries led to delivery of the platelet-derived chemokines CCL5 (regulated on activation, normal T cell expressed and secreted, RANTES) and CXCL4 (platelet factor 4) to the monocyte surface and endothelium of atherosclerotic arteries. The presence of activated platelets promoted leukocyte binding of vascular cell adhesion molecule-1 (VCAM-1) and increased their adhesiveness to inflamed or atherosclerotic endothelium. Injection of activated wild-type, but not P-selectin-deficient, platelets increased monocyte arrest on the surface of atherosclerotic lesions and the size of atherosclerotic lesions in Apoe(-/-) mice. Our results indicate that circulating activated platelets and platelet-leukocyte/monocyte aggregates promote formation of atherosclerotic lesions. This role of activated platelets in atherosclerosis is attributed to platelet P-selectin-mediated delivery of platelet-derived proinflammatory factors to monocytes/leukocytes and the vessel wall.  相似文献   

17.
Movement of leukocytes from peripheral blood into tissues, also called leukocyte extravasation, is absolutely essential for immunity in higher organisms. Over the past decade, our understanding of the molecular mechanisms involved in white blood cell extravasation during both normal immune surveillance and the generation of protective immune responses has taken a great leap forward with the discovery of the chemokine gene superfamily. Chemokines are low-molecular-weight cytokines whose major collective biological activity appears to be that of chemotaxis of both specific and overlapping subsets of leukocytes. They are therefore likely to play a critical role in the directed movement of leukocytes from the bloodstream into tissue. These molecules are almost exclusively secreted and act as extracellular messengers for the immune system. However, emerging data also show that various members of the chemokine gene superfamily exert other biological effects outside the immune system. All nucleated cells and all tissues examined to date are capable of expressing at least some chemokines, and it seems likely therefore that by the time all the chemokines are identified, and all their biological functions elucidated, we will find that, as a family, these molecules perform an extracellular messenger role in all tissues and systems of the body.  相似文献   

18.
To study the mechanisms involved in leukocyte recruitment induced by local bacterial infection within the CNS, we used intravital microscopy to visualize the interaction between leukocytes and the microvasculature in the brain. First, we showed that intracerebroventricular injection of LPS could cause significant rolling and adhesion of leukocytes in the brain postcapillary venules of wild-type mice, while negligible recruitment was observed in TLR4-deficient C57BL/10ScCr mice and CD14 knockout mice, suggesting recruitment is mediated by TLR4/CD14-bearing cells. Moreover, we observed reduced but not complete inhibition of recruitment in MyD88 knockout mice, indicating both MyD88-dependent and -independent pathways are involved. The leukocyte recruitment responses in chimeric mice with TLR4-positive microglia and endothelium, but TLR4-negative leukocytes, were comparable to normal wild-type mice, suggesting either endothelium or microglia play a crucial role in the induction of leukocyte recruitment. LPS injection induced both microglial and endothelial activation in the CNS. Furthermore, minocycline, an effective inhibitor of microglial activation, completely blocked the rolling and adhesion of leukocytes in the brain and blocked TNF-alpha production in response to LPS in vivo. Minocycline did not affect activation of endothelium by LPS in vitro. TNFR p55/p75 double knockout mice also exhibited significant reductions in both rolling and adhesion in response to LPS, indicating TNF-alpha signaling is critical for the leukocyte recruitment. Our results identify a TLR4 detection system within the blood-brain barrier. The microglia play the role of sentinel cells detecting LPS thereby inducing endothelial activation and leading to efficient leukocyte recruitment to the CNS.  相似文献   

19.
The monolayer of endothelial cells that coats the luminal surface of the vessel wall has numerous physiological functions, including the prevention of coagulation, control of vascular permeability, maintenance of vascular tone and regulation of leukocyte extravasation. Recently, we detected functional Fas ligand (FasL) expression on the endothelial lining of blood vessels. FasL induces apoptotic cell death in the multitude of cell types that express its receptor, Fas. Here, we review the function of vascular endothelium in controlling leukocyte extravasation, and illustrate how the regulation of endothelial FasL expression might contribute to this process. We also describe the role of leukocyte extravasation in angiogenesis and atherosclerosis, and we suggest that FasL gene transfer might provide a means of treating diseases of the proliferative vessel wall, particularly those that result from the detrimental infiltration of inflammatory cells.  相似文献   

20.
The extravasation of lymphocytes across central nervous system (CNS) vascular endothelium is a key step in inflammatory demyelinating diseases including multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). The glycosaminoglycan hyaluronan (HA) and its receptor, CD44, have been implicated in this process but their precise roles are unclear. We find that CD44−/− mice have a delayed onset of EAE compared with wild type animals. Using an in vitro lymphocyte rolling assay, we find that fewer slow rolling (<1 μm/s) wild type (WT) activated lymphocytes interact with CD44−/− brain vascular endothelial cells (ECs) than with WT ECs. We also find that CD44−/− ECs fail to anchor HA to their surfaces, and that slow rolling lymphocyte interactions with WT ECs are inhibited when the ECs are treated with a pegylated form of the PH20 hyaluronidase (PEG-PH20). Subcutaneous injection of PEG-PH20 delays the onset of EAE symptoms by ∼1 day and transiently ameliorates symptoms for 2 days following disease onset. These improved symptoms correspond histologically to degradation of HA in the lumen of CNS blood vessels, decreased demyelination, and impaired CD4+ T-cell extravasation. Collectively these data suggest that HA tethered to CD44 on CNS ECs is critical for the extravasation of activated T cells into the CNS providing new insight into the mechanisms promoting inflammatory demyelinating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号