首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work is devoted to the investigation of ethanol direct effect on the transmembrane Ca2+ metabolism in the intracellular structures of myometrium. In the experiments in vitro it has been shown that the Mg2+, ATP-dependent system for Ca2+ accumulation in endoplasmic reticulum is more sensitive then Ca(2+)-accumulating system in mitochondria. It has also been found that the oxytocin insensitive part of Mg2+, ATP-dependent Ca2+ accumulation of the endoplasmic reticulum is less resistant to ethanol inhibition than the oxytocin sensitive one. The data above revealed allow to discuss mechanism of ethanol action on the intracellular Ca2+ homeostasis in myometrium.  相似文献   

2.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

3.
In order of estimating some regularities of ethanol direct (effectory) effect to transmembrane calcium metabolism in the myometrium the action of this substance on the energy-dependent Ca(2+)-transporting systems of the uterine myocytes subcellular structures has been studied. The systems of Mg2+, ATP-dependent Ca2+ transport regarding their sensitivity to ethanol inhibitory effect were displayed as satisfying the following sequences: endoplasmic reticulum calcium pump > plasma membrane solubilized Ca2+, Mg2+, ATP-ase > mitochondrial Ca(2+)-accumulating system = plasma membrane calcium pump. Alongside with the latter, the oxytocin-insensitive component of Mg2+, ATP-dependent Ca2+ accumulation in the endoplasmic reticulum was defined to be less resistant to inhibitory effect of ethanol if compared with the oxytocin-sensitive one. On the base of the data received some mechanisms of ethanol effectory action on the intracellular calcium homeostasis in the myometrium cells are under the discussion.  相似文献   

4.
In the experiments which have been conducted on digitonin-treated myometrium cell suspensions of nonpregnant rats the direct influence of ethanol in concentration 0-10% on the Ca2+ accumulation in mitochondria and endoplasmic reticulum have been studied. Studies have been conducted on the different models, such as, control (model I), subacute (model II), acute (model III) and chronic ethanol consumption (model IV). It has been shown for all models that the dependence of Ca2+ accumulation by mitochondria on the concentration of ethanol in incubation medium is bell-shaped. Acute and chronic ethanol consumption resulted in statistically reliable decrease in the amount of accumulated cations. Nevertheless the I50 values were the same for the models I-III and were 8-9%, although in the case of model IV this one was only 4.0 +/- 0.6%. The increase of ethanol concentration in the incubation medium caused of Ca2+ accumulation decreasing in the endoplasmic reticulum for all studied models, the values of I50 also decreased for models II-IV (2.8 +/- 0.2; 2.5 +/- 0.2 and 2.3 +/- 0.3% respectively) relative to the control (3.8 +/- 0.2%). At the level of model I oxytocin-inhibited component of the endoplasmic reticulum Ca2+ uptake was more stable to the ethanol effects than oxytocin-independent one. Although the sensitivity of the first one to the ethanol effects at the level of models II-IV rose, that parameter for the oxytocin-independent component was not changed. The mechanisms of ethanol effects on Ca2+ accumulation in the myometrium intracellular structures have been discussed.  相似文献   

5.
In the experiments on the impregnant estrogenized rats the effect of chronic ethanol intake on Ca(2+)-accumulative mitochondrial systems and endoplasmatic systems of myometrium was estimated. It was defined that in chronic alcohol consumption the transport activity of mitochondria Ca(2+)-accumulative systems didn't prevail over endoplasmatic reticulum Ca(2+)-accumulative activity. Therewith mitochondria and endoplasmatic Ca(2+)-transport system was essentially disturbed. In the tested conditions Mg2+, ATP-dependent sensitivity of calcium pump to oxytocin inhibiting action was shown to disappear.  相似文献   

6.
Using the isotope exchange technique including 45Ca, the Ca2+-binding and Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart was studied. The ATP-independent binding of Ca2+ to isolated membrane fractions is by 1--2 orders of magnitude less than the ATP-dependent Ca2+-accumulating capacity of the fractions. The Ca2+-accumulating capacity of mitochondria is increased 6--8 fold after addition of physiological concentrations of succinate and Pi to the incubation medium. Under these conditions the ratio of Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of the heart is 100:3,12:2,9. The initial rate of Ca2+-uptake by the sarcoplasmic reticulum is much higher in comparison with sarcolemma and mitochondria. A high Ca2+-accumulating capacity of heart mitochondria probably determines a long-term regulation of the concentration of "troponin-accessible" Ca2+ in the sarcoplasm, whereas the high initial rate of Ca2+ accumulation by the sarcoplasmic reticulum provides for a rapid decrease of Ca2+ concentration during rhythmic contractions of the heart.  相似文献   

7.
Muscle function depends on an adequate ATP supply to sustain the energy consumption associated with Ca(2+) cycling and actomyosin sliding during contraction. In this regulation of energy homeostasis, the creatine kinase (CK) circuit for high energy phosphoryl transfer between ATP and phosphocreatine plays an important role. We earlier established a functional connection between the activity of the CK system and Ca(2+) homeostasis during depolarization and contractile activity of muscle. Here, we show how CK activity is coupled to the kinetics of spontaneous and electrically induced Ca(2+) transients in the sarcoplasm of myotubes. Using the UV ratiometric Ca(2+) probe Indo-1 and video-rate confocal microscopy in CK-proficient and -deficient cultured cells, we found that spontaneous and electrically induced transients were dependent on ryanodine-sensitive Ca(2+) release channels, sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps, extracellular calcium, and functional mitochondria in both cell types. However, at increasing sarcoplasmic Ca(2+) load (induced by electrical stimulation at 0.1, 1, and 10 Hz), the Ca(2+) removal rate and the amount of Ca(2+) released per transient were gradually reduced in CK-deficient (but not wild-type) myotubes. We conclude that the CK/phosphocreatine circuit is essential for efficient delivery of ATP to the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase pumps and thereby directly influences sarcoplasmic reticulum refilling and the kinetics of the sarcoplasmic Ca(2+) signals.  相似文献   

8.
Fertilization triggers cytosolic Ca(2+) oscillations that activate mammalian eggs and initiate development. Extensive evidence demonstrates that Ca(2+) is released from endoplasmic reticulum stores; however, less is known about how the increased Ca(2+) is restored to its resting level, forming the Ca(2+) oscillations. We investigated whether mitochondria also play a role in activation-associated Ca(2+) signaling. Mitochondrial dysfunction induced by the mitochondrial uncoupler FCCP or antimycin A disrupted cytosolic Ca(2+) oscillations, resulting in sustained increase in cytosolic Ca(2+), followed by apoptotic cell death. This suggests that functional mitochondria may participate in sequestering the released Ca(2+), contributing to cytosolic Ca(2+) oscillations and preventing cell death. By centrifugation, mouse eggs were stratified and separated into fractions containing both endoplasmic reticulum and mitochondria and fractions containing endoplasmic reticulum with no mitochondria. The former showed Ca(2+) oscillations by activation, whereas the latter exhibited sustained elevation in cytosolic Ca(2+) but no Ca(2+) oscillations, suggesting that mitochondria take up released cytosolic Ca(2+). Further, using Rhod-2 for detection of mitochondrial Ca(2+), we found that mitochondria exhibited Ca(2+) oscillations, the frequency of which was not different from that of cytosolic Ca(2+) oscillations, indicating that mitochondria are involved in Ca(2+) signaling during egg activation. Therefore, we propose that mitochondria play a crucial role in Ca(2+) signaling that mediates egg activation and development, and apoptotic cell death.  相似文献   

9.
Gilabert JA  Parekh AB 《The EMBO journal》2000,19(23):6401-6407
In eukaryotic cells, hormones and neurotransmitters that engage the phosphoinositide pathway evoke a biphasic increase in intracellular free Ca(2+) concentration: an initial transient release of Ca(2+) from intracellular stores is followed by a sustained phase of Ca(2+) influx. This influx is generally store dependent. Most attention has focused on the link between the endoplasmic reticulum and store-operated Ca(2+) channels in the plasma membrane. Here, we describe that respiring mitochondria are also essential for the activation of macroscopic store-operated Ca(2+) currents under physiological conditions of weak intracellular Ca(2+) buffering. We further show that Ca(2+)-dependent slow inactivation of Ca(2+) influx, a widespread but poorly understood phenomenon, is regulated by mitochondrial buffering of cytosolic Ca(2+). Thus, by enabling macroscopic store-operated Ca(2+) current to activate, and then by controlling its extent and duration, mitochondria play a crucial role in all stages of store-operated Ca(2+) influx. Store-operated Ca(2+) entry reflects a dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane.  相似文献   

10.
Agonist stimulation of exocrine cells leads to the generation of intracellular Ca(2+) signals driven by inositol 1,4,5-trisphosphate receptors (IP(3)Rs) that rapidly become global due to propagation throughout the cell. In many types of excitable cells the intracellular Ca(2+) signal is propagated by a mechanism of Ca(2+)-induced Ca(2+) release (CICR), mediated by ryanodine receptors (RyRs). Expression of RyRs in salivary gland cells has been demonstrated immunocytochemically although their functional role is not clear. We used microfluorimetry to measure Ca(2+) signals in the cytoplasm, in the endoplasmic reticulum (ER) and in mitochondria. In permeabilized acinar cells caffeine induced a dose-dependent, transient decrease of Ca(2+) concentration in the endoplasmic reticulum ([Ca(2+)](ER)). This decrease was inhibited by ryanodine but was insensitive to heparin. Application of caffeine, however, did not elevate cytosolic Ca(2+) concentration ([Ca(2+)](i)) suggesting fast local buffering of Ca(2+) released through RyRs. Indeed, activation of RyRs produced a robust mitochondrial Ca(2+) transient that was prevented by addition of Ca(2+) chelator BAPTA but not EGTA. When mitochondrial Ca(2+) uptake was blocked, activation of RyRs evoked only a non-transient increase in [Ca(2+)](i) and substantially smaller Ca(2+) release from the ER. Upon simultaneous inhibition of mitochondrial Ca(2+) uptake and either plasmalemmal or ER Ca(2+) ATPase, activation of RyRs caused a transient rise in [Ca(2+)](i). Collectively, our data suggest that Ca(2+) released through RyRs is mostly "tunnelled" to mitochondria, while Ca(2+) ATPases are responsible for the fast initial sequestration of Ca(2+). Ca(2+) uptake by mitochondria is critical for maintaining continuous CICR. A complex interplay between RyRs, mitochondria and Ca(2+) ATPases is accomplished through strategic positioning of mitochondria close to both Ca(2+) release sites in the ER and Ca(2+) pumping sites of the plasmalemma and the ER.  相似文献   

11.
α-Synuclein has a central role in Parkinson disease, but its physiological function and the mechanism leading to neuronal degeneration remain unknown. Because recent studies have highlighted a role for α-synuclein in regulating mitochondrial morphology and autophagic clearance, we investigated the effect of α-synuclein in HeLa cells on mitochondrial signaling properties focusing on Ca(2+) homeostasis, which controls essential bioenergetic functions. By using organelle-targeted Ca(2+)-sensitive aequorin probes, we demonstrated that α-synuclein positively affects Ca(2+) transfer from the endoplasmic reticulum to the mitochondria, augmenting the mitochondrial Ca(2+) transients elicited by agonists that induce endoplasmic reticulum Ca(2+) release. This effect is not dependent on the intrinsic Ca(2+) uptake capacity of mitochondria, as measured in permeabilized cells, but correlates with an increase in the number of endoplasmic reticulum-mitochondria interactions. This action specifically requires the presence of the C-terminal α-synuclein domain. Conversely, α-synuclein siRNA silencing markedly reduces mitochondrial Ca(2+) uptake, causing profound alterations in organelle morphology. The enhanced accumulation of α-synuclein into the cells causes the redistribution of α-synuclein to localized foci and, similarly to the silencing of α-synuclein, reduces the ability of mitochondria to accumulate Ca(2+). The absence of efficient Ca(2+) transfer from endoplasmic reticulum to mitochondria results in augmented autophagy that, in the long range, could compromise cellular bioenergetics. Overall, these findings demonstrate a key role for α-synuclein in the regulation of mitochondrial homeostasis in physiological conditions. Elevated α-synuclein expression and/or eventually alteration of the aggregation properties cause the redistribution of the protein within the cell and the loss of modulation on mitochondrial function.  相似文献   

12.
To explore the relationship between signal-stimulated increases in intracellular calcium ([Ca(2+)](i)) and depletion and refilling of the endoplasmic reticulum (ER) Ca(2+) stores ([Ca(2+)](L)) in human myometrial cells, we measured simultaneous changes in [Ca(2+)](i) and [Ca(2+)](L) using Fura-2 and Mag-fluo-4, respectively, in PHM1-41 immortalized and primary cells derived from pregnant myometrium and in primary cells derived from nonpregnant tissue. Signal- and extracellular Ca(2+)-dependent increases in [Ca(2+)](i) (SRCE) and ER refilling stimulated by oxytocin and cyclopiazonic acid were not inhibited by voltage-operated channel blocker nifedipine or mibefradil, inhibition of Na(+)/Ca(2+) exchange with KB-R7943, or zero extracellular Na(+) in PHM1-41 cells. Gadolinium-inhibited oxytocin- and cyclopiazonic acid-induced SRCE and slowed ER store refilling. TRPC1 mRNA knockdown specifically inhibited oxytocin-stimulated SRCE but had no statistically significant effect on ER store refilling and no effect on either parameter following cyclopiazonic acid treatment. Dominant negative STIMΔERM expression attenuated oxytocin- and thapsigargin-stimulated SRCE. Both STIM1 and ORAI1-ORAI3 mRNA knockdowns significantly attenuated oxytocin- and cyclopiazonic acid-stimulated SRCE. The data also suggest that reduction in STIM1 or ORAI1-ORAI3 mRNA can impede the rate of ER store refilling following removal of SERCA inhibition. These data provide evidence for both distinct and overlapping influences of TRPC1, STIM1, and ORAI1-ORAI3 on SRCE and ER store refilling in human myometrial cells that may contribute to the regulation of myometrial Ca(2+) dynamics. These findings have important implications for understanding the control of myometrial Ca(2+) dynamics in relation to myometrial contractile function.  相似文献   

13.
Parekh AB 《Cell calcium》2008,44(1):6-13
In eukaryotic cells, one major route for Ca(2+) influx is through store-operated CRAC channels, which are activated following a fall in Ca(2+) content within the endoplasmic reticulum. Mitochondria are key regulators of this ubiquitous Ca(2+) influx pathway. Respiring mitochondria rapidly take up some of the Ca(2+) released from the stores, resulting in more extensive store depletion and thus robust activation of CRAC channels. As CRAC channels open, the ensuing rise in cytoplasmic Ca(2+) feeds back to inactivate the channels. By buffering some of the incoming Ca(2+) mitochondria reduce Ca(2+)-dependent inactivation of the CRAC channels, resulting in more prolonged Ca(2+) influx. However, mitochondria can release Ca(2+) close to the endoplasmic reticulum, accelerating store refilling and thus promoting deactivation of the CRAC channels. Mitochondria thus regulate all major transitions in CRAC channel gating, revealing remarkable versatility in how this organelle impacts upon Ca(2+) influx. Recent evidence suggests that mitochondria also control CRAC channels through mechanisms that are independent of their Ca(2+)-buffering actions and ability to generate ATP. Furthermore, pyruvic acid, a key intermediary metabolite and precursor substrate for the Krebs cycle, reduces the extent of Ca(2+)-dependent inactivation of CRAC channels. Hence mitochondrial metabolism impacts upon Ca(2+) influx through CRAC channels and thus on a range of key downstream cellular responses.  相似文献   

14.
A rise in cytosolic Ca(2+) concentration is used as a key activation signal in virtually all animal cells, where it triggers a range of responses including neurotransmitter release, muscle contraction, and cell growth and proliferation [1]. During intracellular Ca(2+) signaling, mitochondria rapidly take up significant amounts of Ca(2+) from the cytosol, and this stimulates energy production, alters the spatial and temporal profile of the intracellular Ca(2+) signal, and triggers cell death [2-10]. Mitochondrial Ca(2+) uptake occurs via a ruthenium-red-sensitive uniporter channel found in the inner membrane [11]. In spite of its critical importance, little is known about how the uniporter is regulated. Here, we report that the mitochondrial Ca(2+) uniporter is gated by cytosolic Ca(2+). Ca(2+) uptake into mitochondria is a Ca(2+)-activated process with a requirement for functional calmodulin. However, cytosolic Ca(2+) subsequently inactivates the uniporter, preventing further Ca(2+) uptake. The uptake pathway and the inactivation process have relatively low Ca(2+) affinities of approximately 10-20 microM. However, numerous mitochondria are within 20-100 nm of the endoplasmic reticulum, thereby enabling rapid and efficient transmission of Ca(2+) release into adjacent mitochondria by InsP(3) receptors on the endoplasmic reticulum. Hence, biphasic control of mitochondrial Ca(2+) uptake by Ca(2+) provides a novel basis for complex physiological patterns of intracellular Ca(2+) signaling.  相似文献   

15.
Trypanosomatids of the genus Herpetomonas comprises monoxenic parasites of insects that present pro- and opisthomastigotes forms in their life cycles. In this study, we investigated the Ca(2+) transport and the mitochondrial bioenergetic of digitonin-permeabilized Herpetomonas sp. promastigotes. The response of promastigotes mitochondrial membrane potential to ADP, oligomycin, Ca(2+), and antimycin A indicates that these mitochondria behave similarly to vertebrate and Trypanosoma cruzi mitochondria regarding the properties of their electrochemical proton gradient. Ca(2+) transport by permeabilized cells appears to be performed mainly by the mitochondria. Unlike T. cruzi, it was not possible to observe Ca(2+) release from Herpetomonas sp. mitochondria, probably due to the simultaneous Ca(2+) uptake by the endoplasmic reticulum. In addition, a vanadate-sensitive Ca(2+) transport system, attributed to the endoplasmic reticulum, was also detected. Nigericin (1 microM), FCCP (1 microM), or bafilomycin A(1) (5 microM) had no effect on the vanadate-sensitive Ca(2+) transport. These data suggest the absence of a Ca(2+) transport mediated by a Ca(2+)/H(+) antiport. No evidence of a third Ca(2+) compartment with the characteristics of the acidocalcisomes described by A. E. Vercesi et al. (1994, Biochem. J. 304, 227-233) was observed. Thapsigargin and IP(3) were not able to affect the vanadate-sensitive Ca(2+) transport. Ruthenium red was able to inhibit the Ca(2+) uniport of mitochondria, inducing a slow mitochondrial Ca(2+) efflux, compatible with the presence of a Ca(2+)/H(+) antiport. Moreover, this efflux was not stimulated by the addition of NaCl, which suggests the absence of a Ca(2+)/Na(+) antiport in mitochondria.  相似文献   

16.
Song YM  Lu ZQ  Guan MX 《生理学报》2012,64(3):333-340
It has been shown that mitochondria not only control their own Ca(2+) concentration ([Ca(2+)]), but also exert an influence over Ca(2+) signaling of the entire cell, including the endoplasmic reticulum or the sarcoplasmic reticulum, the plasma membrane, and the nucleus. That is to say, mitochondria couple cellular metabolic state with Ca(2+) transport processes. This review focuses on the ways in which the mitochondrial Ca(2+) handling system provides integrity and modulation for the cell to cope with the complex actions throughout its life cycle, enumerates some indeterminate aspects about it, and finally, prospects directions of future research.  相似文献   

17.
Ca(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress. We conclude that GRP78 influences ER-mitochondrial Ca(2+) crosstalk to maintain mitochondrial function and protect astrocytes from ischemic injury.  相似文献   

18.
The uncoupling proteins UCP2 and UCP3 have been postulated to catalyze Ca(2+) entry across the inner membrane of mitochondria, but this proposal is disputed, and other, unrelated proteins have since been identified as the mitochondrial Ca(2+) uniporter. To clarify the role of UCPs in mitochondrial Ca(2+) handling, we down-regulated the expression of the only uncoupling protein of HeLa cells, UCP3, and measured Ca(2+) and ATP levels in the cytosol and in organelles with genetically encoded probes. UCP3 silencing did not alter mitochondrial Ca(2+) uptake in permeabilized cells. In intact cells, however, UCP3 depletion increased mitochondrial ATP production and strongly reduced the cytosolic and mitochondrial Ca(2+) elevations evoked by histamine. The reduced Ca(2+) elevations were due to inhibition of store-operated Ca(2+) entry and reduced depletion of endoplasmic reticulum (ER) Ca(2+) stores. UCP3 depletion accelerated the ER Ca(2+) refilling kinetics, indicating that the activity of sarco/endoplasmic reticulum Ca(2+) (SERCA) pumps was increased. Accordingly, SERCA inhibitors reversed the effects of UCP3 depletion on cytosolic, ER, and mitochondrial Ca(2+) responses. Our results indicate that UCP3 is not a mitochondrial Ca(2+) uniporter and that it instead negatively modulates the activity of SERCA by limiting mitochondrial ATP production. The effects of UCP3 on mitochondrial Ca(2+) thus reflect metabolic alterations that impact on cellular Ca(2+) homeostasis. The sensitivity of SERCA to mitochondrial ATP production suggests that mitochondria control the local ATP availability at ER Ca(2+) uptake and release sites.  相似文献   

19.
Consecutive cleavages of amyloid precursor protein (APP) generate APP intracellular domain (AICD). Its cellular function is still unclear. In this study, we investigated the functional role of AICD in cellular Ca(2+) homeostasis. We could confirm previous observations that endoplasmic reticulum Ca(2+) stores contain less calcium in cells with reduced APP gamma-secretase cleavage products, increased AICD degradation, reduced AICD expression or in cells lacking APP. In addition, we observed an enhanced resting cytosolic calcium concentration under conditions where AICD is decreased or missing. In view of the reciprocal effects of Ca(2+) on mitochondria and of mitochondria on Ca(2+) homeostasis, we analysed further the cellular ATP content and the mitochondrial membrane potential. We observed a reduced ATP content and a mitochondrial hyperpolarisation in cells with reduced amounts of AICD. Blockade of mitochondrial oxidative phosphorylation chain in control cells lead to similar alterations as in cells lacking AICD. On the other hand, substrates of Complex II rescued the alteration in Ca(2+) homeostasis in cells lacking AICD. Based on these observations, our findings indicate that alterations observed in endoplasmic reticulum Ca(2+) storage in cells with reduced amounts of AICD are reciprocally linked to mitochondrial bioenergetic function.  相似文献   

20.
Ca(2+) plays a fundamental role in the control of a variety of cellular functions, in particular, in energy metabolism and apoptosis. In this study, we show that TGF-beta at concentrations of 0.1-1.0 ng/ml transiently increases the level of intracellular Ca(2+) ([Ca(2+)](in)) in human prostate carcinoma, PC-3U, cells. Experiments with mitochondrial inhibitors (oligomycin and antimycin A) and an inhibitor of endoplasmic reticulum Ca(2+) uptake (BHQ) implied that the effect of TGF-beta1 was due to an effect on the mitochondria. TGF-beta1 treatment resulted in a decrease in ATP synthesis and to a depolarisation, leading to a release of Ca(2+) from mitochondria and decreased activity of the Ca(2+) pumps. Analysis of the mitochondria within the PC-3U cells by polarography and membrane potential-sensitive dye (Rhodamine 123) confirmed that under these experimental conditions, TGF-beta1 inhibited ATP synthesis and depolarised the mitochondria. The results implicate that TGF-beta1 affects the function of the mitochondria and may be of significance for the understanding of the proapoptotic effect of TGF-beta1 in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号