首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regenerating gene (Reg) IV is a newly discovered member of the regenerating gene family belonging to the calcium (C-type) dependent lectin superfamily. Reg IV is highly expressed in the gastrointestinal tract and markedly up-regulated in colon adenocarcinoma, pancreatic cancer, gastric adenocarcinoma, and inflammatory bowel disease. However, the physiological and pathological functions of Reg IV are largely unknown, partly due to the limited access of the bioactive protein. We report here the first expression and purification of Reg IV proteins using a prokaryotic system. Human Reg IV was expressed in Escherichia coli as an insoluble protein which was identified in the fraction of inclusion body after ultrasonication of the bacteria. After the protein aggregate was solubilized by guanidine–HCl, it was refolded by sucrose and arginine-assisted procedures and purified using cation-exchange chromatography. The protein identity and purity of the final preparation were confirmed by analysis of the protein mass and immune specificity in SDS–PAGE, Western blotting, and HPLC assay. The biological activity of the protein was determined by the HCT116 and HT29 cell proliferation assays. The highly purified bioactive human Reg IV should aid in further characterization of its physiological and pathological functions.  相似文献   

2.
利用原核表达系统表达人源抑菌蛋白Reg3A,经包涵体的复性和纯化获得有体外抑菌功能的活性抑菌蛋白,并对其体外抑菌功能进行初步研究。构建Reg3A原核表达载体PET-32a-Reg3A转化补充稀缺tRNA基因的表达菌株大肠杆菌BL21-Codonplus,阳性重组子采用诱导培养基诱导5h后,采用超声破碎的方法提取包涵体蛋白,经包涵体蛋白的纯化和透析复性后通过Ni-NTA亲和层析交换柱,获得纯度达95%的蛋白质。Western blot鉴定显示在15 kD处有特异性条带。使用纯化后的蛋白进一步进行抑菌圈实验和抑菌活性实验,对获得蛋白的体外抑菌活性进行评估,从而为进一步进行Reg3A蛋白功能的评估及应用奠定基础。  相似文献   

3.
Human Reg and Reg-related genes constitute a multi-gene family belonging to the calcium (C-type) dependent lectin superfamily. Regenerating gene family members are expressed in the proximal gastrointestinal (GI) tract and ectopically at other sites in the setting of tissue injury. By high-throughput sequence analysis of a large inflammatory bowel disease library, two cDNAs have been isolated which encode a novel member of this multigene family. Based on primary sequence homology, tissue expression profiles, and shared exon-intron junction genomic organization, we assign this gene to the regenerating gene family. Specific protein structural differences suggest that the current three regenerating gene subtypes should be expanded to four. We demonstrate that Reg IV has a highly restricted tissue expression pattern, with prominent expression in the gastrointestinal tract. Reg IV mRNA expression is significantly up-regulated by mucosal injury from active Crohn's disease or ulcerative colitis.  相似文献   

4.
The regenerating (Reg) family comprises an extensive, diversified group of proteins with homology to C-type lectins. Several members of this family are highly expressed in the gastrointestinal tract under normal conditions, and often show increased expression in inflammatory bowel disease. However, little is known about Reg protein function, and the carbohydrate ligands for these proteins are poorly characterized. We report here the first expression and purification of Reg proteins using a bacterial system. Mouse RegIIIgamma and its human counterpart, HIP/PAP, were expressed in Escherichia coli, resulting in the accumulation of aggregated recombinant protein. Both proteins were renatured by arginine-assisted procedures and were further purified using cation-exchange chromatography. The identities of the purified proteins were confirmed by SDS-PAGE, N-terminal sequencing, and MALDI-TOF mass spectrometry. Size exclusion chromatography revealed that both proteins exist as monomers, and circular dichroism showed that their secondary structures exhibit a predominance of beta-strands which is typical of C-type lectins. Finally, both RegIIIgamma and human HIP/PAP bind to mannan but not to monomeric mannose, giving initial insights into their carbohydrate ligands. These studies thus provide an essential foundation for further analyses of human and mouse RegIII protein function.  相似文献   

5.
Regenerating gene (Reg), first isolated from a regenerating islet cDNA library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells that ameliorates the diabetes of 90% depancreatized rats and non-obese diabetic mice. Reg and Reg-related genes have been revealed to constitute a multigene family, the Reg family, which consists of three subtypes (types I, II, III) based on the primary structures of the encoded proteins of the genes. We have isolated three types of mouse Reg family gene (Reg I, Reg II, Reg IIIalpha, Reg IIIbeta and Reg IIIgamma) [Unno et al. (1993) J. Biol. Chem. 268, 15974-15982; Narushima et al. (1997) Gene 185, 159-168]. In the present study, by Southern blot analysis of a mouse bacterial artificial chromosome clone containing the five Reg family genes in combination with PCR cloning of every interspace fragment between adjacent genes, the Reg family genes were mapped to a contiguous 75kb region of the mouse genome according to the following order: 5'-Reg IIIbeta-Reg IIIalpha-Reg II-Reg I-Reg IIIgamma-3'. In the process of ordering the genes, we sequenced the 6.8kb interspace fragment between Reg IIIbeta and Reg IIIalpha and encountered a novel type III Reg gene, Reg IIIdelta. This gene is divided into six exons spanning about 3kb, and encodes a 175 amino acid protein with 40-52% identity with the other five mouse Reg (regenerating gene product) proteins. Reg IIIdelta was expressed predominantly in exocrine pancreas, but not in normal islets, hyperplastic islets, intestine or colon, whereas both Reg I and Reg II were expressed in hyperplastic islets and Reg IIIalpha, Reg IIIbeta and Reg IIIgamma were expressed strongly in the intestinal tract. Possible roles of Reg IIIdelta and the widespread occurrence of the Reg IIIdelta gene in mammalian genomes are discussed.  相似文献   

6.
ABSTRACT: Aim The aberrant expression of regenerating islet-derived family member, 4 (Reg IV) has been found in various human cancers. However, the roles of Reg IV gene and its encoding product in human glioma have not been clearly understood. Therefore, the aim of this study was to investigate the clinicopathological significance of Reg IV expression in glioma. METHODS: Reg IV mRNA and protein expression in human gliomas and non-neoplastic brain tissues were respectively detected by real-time quantitative RT-PCR assay, Western blot, and immunohistochemistry. The association of Reg IV immunostaining with clinicopathological factors and prognosis of glioma patients was also statistically analyzed. RESULTS: Reg IV mRNA and protein expression levels in glioma tissues were both significantly higher than those in the corresponding non-neoplastic brain tissues (both P?相似文献   

7.
Regenerating gene (Reg), first isolated from a regenerating islet cDNA library, encodes a secretory protein with a growth stimulating effect on pancreatic beta cells that ameliorates the diabetes of 90% depancreatized rats and non-obese diabetic mice. Reg and Reg-related genes have been revealed to constitute a multigene family, the Reg family, which consists of four subtypes (types I, II, III, IV) based on the primary structures of the encoded proteins of the genes [Diabetes 51(Suppl. 3) (2002) S462]. Plural type III Reg genes were found in mouse and rat. On the other hand, only one type III REG gene, HIP/PAP (gene expressed in hepatocellular carcinoma-intestine-pancreas/gene encoding pancreatitis-associated protein), was found in human. In the present study, we found a novel human type III REG gene, REG III. This gene is divided into six exons spanning about 3 kilobase pairs (kb), and encodes a 175 amino acid (aa) protein with 85% homology with HIP/PAP. REG III was expressed predominantly in pancreas and testis, but not in small intestine, whereas HIP/PAP was expressed strongly in pancreas and small intestine. IL-6 responsive elements existed in the 5'-upstream region of the human REG III gene indicating that the human REG III gene might be induced during acute pancreatitis. All the human REG family genes identified so far (REG Ialpha, REG Ibeta, HIP/PAP, REG III and REG IV) have a common gene structure with 6 exons and 5 introns, and encode homologous 158-175-aa secretory proteins. By database searching and PCR analysis using a yeast artificial chromosome clone, the human REG family genes on chromosome 2, except for REG IV on chromosome 1, were mapped to a contiguous 140 kb region of the human chromosome 2p12. The gene order from centromere to telomere was 5' HIP/PAP 3'-5' RS 3'-3' REG Ialpha 5'-5' REG Ibeta 3'-3' REG III 5'. These results suggest that the human REG gene family is constituted from an ancestor gene by gene duplication and forms a gene cluster on the region.  相似文献   

8.
Reg (regenerating gene) was isolated as a gene specifically expressed in regenerating islets (Terazono, K., Yamamoto, H., Takasawa, S., Shiga, K., Yonemura, Y., Tochino, Y., and Okamoto, H. (1988) J. Biol. Chem. 263, 2111-2114). Rat and human Reg gene products, Reg/REG proteins, have been demonstrated to stimulate islet beta-cell growth in vitro and in vivo and to ameliorate experimental diabetes. In the present study, we isolated a cDNA for the Reg protein receptor from a rat islet cDNA library. The cDNA encoded a cell surface 919-amino acid protein, and the cells into which the cDNA had been introduced bound Reg protein with high affinity. When the cDNA was introduced into RINm5F cells, a pancreatic beta-cell line that shows Reg-dependent growth, the transformants exhibited significant increases in the incorporation of 5'-bromo-2'-deoxyuridine as well as in the cell numbers in response to Reg protein. A homology search revealed that the cDNA is a homologue to a human multiple exostoses-like gene, the function of which has hitherto been unknown. These results strongly suggest that the receptor is encoded by the exostoses-like gene and mediates a growth signal of Reg protein for beta-cell regeneration.  相似文献   

9.
10.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) regulates proliferation, differentiation, and function of hematopoietic progenitor cells. Aside from expansion of hematopoietic cells, GM-CSF has shown efficacy in other diseases, including Crohn's disease. While GM-CSF being clinically used in humans, the ability to perform mechanistic studies in murine models is difficult due to the limited availability and rapid clearance of murine GM-CSF in the peripheral blood. To address these issues, we efficiently expressed murine GM-CSF under the control of the AOX1 gene promoter in Pichia pastoris using the Mut(S) strain KM71H. We describe the unique conditions that are required for efficient production by high-density fermentation and purification of mGM-CSF protein. Recombinant mGM-CSF protein was purified by tangential flow ultrafiltration and preparative reverse phase chromatography. To address limited half life or rapid clearance in mice, recombinant murine GM-CSF was modified by lysine-directed polyethylene glycol conjugation (PEGylation). PEG-modified and unmodified proteins were characterized by amino terminus sequence analysis and matrix assisted laser desorption ionization time-of-flight mass spectrometry. Under the mild reaction conditions, the recombinant protein is efficiently modified by PEGylation on an average of 2-3 sites per molecule. In vivo treatment of mice with PEGylated mGM-CSF, but not the unmodified recombinant mGM-CSF, reproduces the potent colony stimulating effects of human GM-CSF in patients on myeloid progenitor populations, as assessed by FACs analysis. This simplified approach for the expression, purification, and modification of a biologically potent form of murine GM-CSF should facilitate the study of central mechanisms of action in murine disease models.  相似文献   

11.
12.
目的:探讨人再生基因Ⅳ(REGIV)在前列腺细胞中的表达及意义.方法:构建REGIV基因的全序列过表达质粒.将全序列过表达质粒采用脂质体转染的方式转入前列腺细胞系PC-3中.应用Real-time-PCR方法检测REGIV基因mRNA表达,Westembloting检测REGIV基因蛋白质表达,MTT法分析细胞增殖活性.结果:通过荧光显微镜观察计数,细胞转染成功.REGIV基因的全序列过表达使REGIV基因mRNA的表达,蛋白表达提高,细胞增殖能力增强.结论:应用全序列过表达技术可以使前列腺癌REGIV表达水平特异性增高.前列腺癌增值能力的增强说明REGW可能与肿瘤快速增长有关.  相似文献   

13.
14.
张宇伟  丁六松  来茂德 《遗传》2003,25(5):601-606
再生基因家族自1988年被发现以来,其在糖尿病、炎症创伤与肿瘤尤其在消化系统肿瘤中的作用日渐被重视。越来越多的该家族成员被发现,并已开始考虑在临床治疗中应用。这些研究开始显示再生基因家族的潜在应用价值。 Abstract:Since the first member of Reg gene was discovered in 1988,it has been verified that Reg genes play important roles in diabetes,inflammation and injury,and tumors.More members were cloned and their application in treatment was studied.With the development of related research,there is a great potential of Reg family in biomedical field.  相似文献   

15.
Reg is a growth factor with mitogenic effects on pancreatic β cells and gastric stem cells. To date, there has been no information available on Reg-mediated intracellular signal transduction pathways. The role of Reg in the gastric carcinogenesis is also unknown. In the current study, the Reg signaling pathway in gastric cancer cell was examined. Reg treatment of MKN45 gastric cancer cells resulted in tyrosyl-phoshorylation of several cellular proteins and subsequent activation of classical MAPK, ERK1/2. Reg also stimulated thymidine incorporation in MKN45 and AGS gastric cancer cells in a dose-dependent manner. Finally, Reg was shown to be highly expressed in a large number of gastric cancers in vivo. Taken together, these data suggest that gastric cancer cells have gained the ability to overexpress Reg protein, which confer upon themselves added proliferative capacities, resulting in a considerable growth advantage.  相似文献   

16.
17.
目的研究真核表达的textilinin-1蛋白纯化品对纤溶酶抑制作用。方法根据textilinin-1的天然氨基酸序列,按照毕氏酵母偏好密码子进行优化,合成textilinin-1基因,重组到pPICZα载体上,并转化至Pichia p.X-33菌种中,实现高效分泌表达,并进行重组textilinin-1活力单位的定义及小鼠断尾试验。结果通过高密度发酵及两步柱层析纯化,最终从10L发酵液中得到6g纯度达97.0%以上的重组textilinin-1。活性研究表明,重组textilinin-1对纤溶酶的活性具有抑制作用,并对tPA所致的小鼠出血倾向有一定的抑制作用。结论重组textilinin-1可抑制纤溶酶活性,并对纤溶性出血小鼠模型有止血作用,具有开发为止血药的潜力。  相似文献   

18.
19.
Mitochondrial malate dehydrogenase (m-MDH; EC 1.1.1.37), from mycelial extracts of the thermophilic, aerobic fungus Talaromyces emersonii, was purified to homogeneity by sequential hydrophobic interaction and biospecific affinity chromatography steps. Native m-MDH was a dimer with an apparent monomer mass of 35 kDa and was most active at pH 7.5 and 52 degrees C in the oxaloacetate reductase direction. Substrate specificity and kinetic studies demonstrated the strict specificity of this enzyme, and its closer similarity to vertebrate m-MDHs than homologs from invertebrate or mesophilic fungal sources. The full-length m-MDH gene and its corresponding cDNA were cloned using degenerate primers derived from the N-terminal amino acid sequence of the native protein and multiple sequence alignments from conserved regions of other m-MDH genes. The m-MDH gene is the first oxidoreductase gene cloned from T. emersonii and is the first full-length m-MDH gene isolated from a filamentous fungal species and a thermophilic eukaryote. Recombinant m-MDH was expressed in Escherichia coli, as a His-tagged protein and was purified to apparent homogeneity by metal chelate chromatography on an Ni2+-nitrilotriacetic acid matrix, at a yield of 250 mg pure protein per liter of culture. The recombinant enzyme behaved as a dimer under nondenaturing conditions. Expression of the recombinant protein was confirmed by Western blot analysis using an antibody against the His-tag. Thermal stability studies were performed with the recombinant protein to investigate if results were consistent with those obtained for the native enzyme.  相似文献   

20.
The studies described here were performed to characterize further the plasma membrane associated protein BsSco, which is the product of the gene ypmQ, in Bacillus subtilis. BsSco is a member of the Sco family of proteins found in the inner mitochondrial membrane of yeast and humans and implicated as an accessory protein in the assembly of the Cu(A) site of cytochrome c oxidase. We have cloned the gene expressing BsSco, placed a six-histidine tag on its C-terminus, and over-expressed this protein in B. subtilis. Recombinant BsSco with the his-tag has been purified from Triton X-100-solubilized plasma membranes by nickel metal affinity chromatography. Mass spectral analysis of the purified protein is consistent with processing of BsSco by signal peptidase II removing an N-terminal putative transmembrane sequence to leave an acyl-glyceryl moiety at cysteine residue 19. Antibodies, raised against purified, recombinant BsSco, were used to characterize the timing of the level of native BsSco in batch cultures of wild-type B. subtilis. There is a marked lag in the level of native BsSco, but it does appear prior to cytochrome c oxidase, which is expressed in late stage growth. This work supports a role for BsSco in the assembly of the Cu(A) site of cytochrome c oxidase and its functional relationship to the Sco proteins found in eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号