首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IL-18 expression has recently been detected in rheumatoid arthritis (RA) synovial membrane. We investigated the mechanisms by which IL-18-induced collagen-induced arthritis in DBA/1 mice primed intradermally with type II bovine collagen in IFA and boosted i.p. 21 days later with CII in saline. Mice were injected i.p. with rIL-12, rIL-18, or both (100 ng) during days -1 to 4 and again on days 20-24. Control mice received PBS. Mice treated with IL-12 or IL-18 alone developed significantly higher incidence and more severe disease compared with controls. These were elevated further by combination treatment with IL-12 and IL-18. The cytokine treatments led to markedly enhanced synovial hyperplasia, cellular infiltration, and cartilage erosion compared with controls. Cytokine-treated mice produced significantly more IFN-gamma, TNF-alpha, and IL-6 than the controls. Interestingly, IL-18-treated mice produced more TNF-alpha and IL-6, but less IFN-gamma, compared with mice treated with IL-12. Furthermore, splenic macrophages from DBA/1 mice cultured in vitro with IL-18, but not IL-12, produced substantial amounts of TNF-alpha. Mice treated with IL-18 or IL-18 plus IL-12 produced markedly more IgG1 and IgG2a anti-collagen Ab compared with controls, whereas IL-12 treatment only led to an enhanced IgG2a response. Together these results demonstrate that IL-18 can promote collagen-induced inflammatory arthritis through mechanisms that may be distinct from those induced by IL-12.  相似文献   

3.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

4.
IL-13 and IL-4 have similar biological activities and are characteristic of cytokines expressed by Th2 cells. In contrast, IL-12 and IL-18 have been shown to be strong cofactors for Th1 cell development. In this study, we found strong induction of IL-13 mRNA and protein by IL-2 + IL-18 in NK and T cells. In contrast, IL-12 did not enhance the IL-13 production induced by IL-2 alone. Moreover, IL-13 mRNA and protein expression induced by IL-2 + IL-18 in purified NK and T cells obtained from IFN-gamma knockout (-/-) mice were greater than seen in purified cells from normal controls. In contrast, IL-10 production induced by IL-2 and/or IL-12 was not significantly different in IFN-gamma (-/-) mice and normal controls. These results suggest IL-13 expression induced by IL-2 + IL-18 may be regulated by IFN-gamma in vivo, while IL-10 expression may be IFN-gamma-independent. Thus, depending upon the cell type, IL-18 may act as a strong coinducer of Th1 or Th2 cytokines. Our findings suggest that IL-12 and IL-18 have different roles in the regulation of gene expression in NK and T cells.  相似文献   

5.
Macrophages release IFN-gamma on combined stimulation with IL-12 and IL-18, but the signaling requirements of this process and its regulation by other cytokines are unknown. Here, we demonstrate that STAT4 is indispensable for IL-12/IL-18-induced production of IFN-gamma by mouse peritoneal macrophages. Type 2 NO synthase (NOS2), which we previously found to be a prerequisite for IL-12-induced IFN-gamma production in NK cells, was not required for IFN-gamma production by these macrophages. IL-12 alone already induced the expression of IFN-gamma mRNA, but nuclear translocation of STAT4, the release of IFN-gamma protein, and the subsequent production of NO was strictly dependent on the simultaneous presence of IL-18. NF-kappa B, which mediates IL-18 effects in T cells, was only weakly activated by IL-12 and/or IL-18 in macrophages. Known inhibitors of macrophage functions (e.g., IL-4 and TGF-beta) also suppressed macrophage IFN-gamma production and the subsequent production of NOS2-derived NO. The inhibitory effect of IL-4 was paralleled by nuclear translocation of STAT6, which in EMSAs was able to bind to the same DNA oligonucleotide as STAT4. These results further define the production of IFN-gamma by macrophages and point to a diversity in the signals required for IFN-gamma production by various cell types.  相似文献   

6.
BACKGROUND: Interferon (IFN)-gamma is a key to protective immunity against a variety of intracellular bacterial infections, including Chlamydia trachomatis. Interleukin (IL)-18, a recently identified Th1 cytokine, together with IL-12 is a strong stimulator for IFN-gamma production. We investigated the relative roles of IL-18 and IL- 12 in protective immunity to C. trachomatis mouse pneumonitis (MoPn) infection using gene knockout (KO) and wild-type (WT) mice. MATERIALS AND METHODS: Mice were intranasally infected with C. trachomatis MoPn and protective immunity was assessed among groups of mice by daily body weight changes, lung growth of MoPn, and histopathological appearances at day 10 postinfection. The corresponding immune responses for each group of mice at the same postinfection time point were evaluated by measuring antigen-specific antibody isotype responses and cytokine profiles. RESULTS: Our results showed that IL-18 deficiency had little or no influence on clearance of MoPn from the lung, although KO mice exhibited slightly more severe inflammatory reactions in lung tissues, as well as reduced systemic and local IFN-gamma production, compared with WT mice. Results with IL-18 KO mice were in sharp contrast to those observed with IL-12 KO mice that showed substantially reduced clearance of MoPn from the lungs, substantial reductions of antigen-specific systemic and lung IFN-gamma production, decreased ratio of MoPn-specific immunoglobulin G (IgG)2a/IgG1, and severe pathological changes in the lung with extensive polymorphonuclear, instead of mononuclear, cell infiltration. Exogenous IL-12 or IL-18 was able to increase IFN-gamma production in IL-18 KO mice; whereas, only exogenous IL-12, but not IL-18, enhanced IFN-gamma production in IL-12 KO mice. Caspase-1 is the key protease for activation of IL-18 precursor into the bioactive form, and caspase-1 KO mice also displayed similar bacterial clearance and body weight loss to that in WT mice at early stages of MoPn infection. This further confirmed that IL-18 was not essential for host defense against chlamydia infection. CONCLUSIONS: These results suggest that IL-12, rather than IL-18, plays the dominant role in the development of protective immunity against chlamydia lung infection, although both cytokines are involved in the in vivo regulation of IFN-gamma production.  相似文献   

7.
Two key events occur during the differentiation of IFN-gamma-secreting Th1 cells: up-regulation of IL-12Rbeta2 and IL-12-driven up-regulation of IL-18Ralpha. We previously demonstrated that IL-12-driven up-regulation of IL-18Ralpha expression is severely impaired in IFN-gamma(-/-) mice. However, it was unclear from these studies how IFN-gamma influenced IL-18Ralpha since IFN-gamma alone had no direct effect on IL-18Ralpha expression. In the absence of IL-4, IL-12-dependent up-regulation of IL-18Ralpha/IL-12Rbeta2 was independent of IFN-gamma. However, in the presence of IL-4, IFN-gamma functions to limit the negative effects of IL-4 on both IL-18Ralpha and IL-12Rbeta2. Neutralization of IL-4 restored IL-12-driven up-regulation of IL-18Ralpha/IL-12Rbeta2 in an IFN-gamma-independent fashion. In the absence of both IL-12 and IL-4, IFN-gamma up-regulates IL-12beta2 expression and primes IFN-gamma-producing Th1 cells. When T cells were primed in the presence of IL-4, no correlation was found between the levels of expression of the IL-18Ralpha or the IL-12Rbeta2 and the capacity of these cells to produce IFN-gamma, suggesting that IL-4 may also negatively affect IL-12-mediated signal transduction and thus Th1 differentiation. These data clarify the role of IFN-gamma in regulation of IL-18Ralpha/IL-12Rbeta2 during both IL-12-dependent and IL-12-independent Th1 differentiation.  相似文献   

8.
9.
Identification of IFN-gamma-producing cells in IL-12/IL-18-treated mice   总被引:2,自引:0,他引:2  
Both IL-12 and IL-18 have been characterized as effective IFN-gamma-inducing cytokines. Concomitant treatment with IL-12 and IL-18 has been shown to synergistically induce IFN-gamma and may be an effective therapy for treating cancer, allergy, and infectious diseases. To understand the mechanisms underlying the strong induction of IFN-gamma by IL-12/IL-18 in mice, we focused our studies on the IFN-gamma-producing cells in various lymphoid organs and tissues and utilized the intracellular cytokine staining method to detect such cells in situ. After combined treatment with IL-12 and IL-18, IFN-gamma-positive cells in C57BL/6 mice were detected in the liver (12.18%), spleen (0.68%), bone marrow (1.80%), and peritoneum (2.12%), but not in the thymus or lymph nodes (<0.05 and <0.08%, respectively). A two-color staining method revealed that the majority of IFN-gamma-producing cells in the liver were NK1.1(+) cells, while those in the spleen were mostly CD3(+) cells, and to a lesser degree NK1.1(+) cells. Both CD4(+) and CD8(+) cells in the liver and in the spleen produced IFN-gamma. The CD19(+) B cell population was not definitely shown to produce IFN-gamma in our induction experiments. NKT cells, which are a subpopulation of NK1. 1(+) CD3(+) cells, were diminished in the liver and did not seem to contribute to IFN-gamma production arising from IL-12/IL-18 treatment. Further in vitro experiments confirmed the responsiveness of hepatic mononuclear cells to IL-12/IL-18 stimulation. This study is the first to show the IFN-gamma-producing mechanisms of IL-12/IL-18 treatment at the phenotypic level.  相似文献   

10.
Innate cellular production of IFN-gamma is suppressed after repeated exposure to LPS, whereas CpG-containing DNA potentiates IFN-gamma production. We compared the modulatory effects of LPS and CpG on specific cellular and cytokine responses necessary for NK-cell dependent IFN-gamma synthesis. C3H/HeN mice pretreated with LPS for 2 days generated 5-fold less circulating IL-12 p70 and IFN-gamma in response to subsequent LPS challenge than did challenged control mice. In contrast, CpG-pretreated mice produced 10-fold more circulating IFN-gamma without similar changes in IL-12 p70 levels, but with 10-fold increases in serum IL-18 relative to LPS-challenged control or endotoxin-tolerant mice. The role of IL-18 in CpG-induced immune potentiation was studied in splenocyte cultures from control, LPS-conditioned, or CpG-conditioned mice. These cultures produced similar amounts of IFN-gamma in response to rIL-12 and rIL-18. However, only CpG-conditioned cells produced IFN-gamma when cultured with LPS or CpG, and production was ablated in the presence of anti-IL-18R Ab. Anti-IL-18R Ab also reduced in vivo IFN-gamma production by >2-fold in CpG-pretreated mice. Finally, combined pretreatment of mice with LPS and CpG suppressed the production of circulating IFN-gamma, IL-12 p70, and IL-18 after subsequent LPS challenge. We conclude that CpG potentiates innate IFN-gamma production from NK cells by increasing IL-18 availability, but that the suppressive effects of LPS on innate cellular immunity dominate during combined LPS and CpG pretreatment. Multiple Toll-like receptor engagement in vivo during infection can result in functional polarization of innate immunity dominated by a specific Toll-like receptor response.  相似文献   

11.
NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5+CD3-), those derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5+CD3-) and T-NK cells (DX5+CD3+). Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-gamma, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-gamma, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-gamma and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig production by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-gammaR knockout mice demonstrated that IFN-gamma was not involved in the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18-derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity.  相似文献   

12.
Interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) regulate CD4+ T cell interferon-gamma (IFN-gamma) secretion in schistosome granulomas. The role of IL-12 was determined using C57BL/6 and CBA mice. C57BL/6 IL-4-/- granuloma cells were stimulated to produce IFN-gamma when cultured with IL-10 or TGF-beta neutralizing monoclonal antibody. In comparison, C57BL/6 wild-type (WT) control granuloma cells produced less IFN-gamma. IL-12, IL-18, and soluble egg antigen stimulated IFN-gamma release from C57BL/6 IL-4-/- and WT mice. IFN-gamma production in C57 IL-4-/- and WT granulomas was IL-12 dependent, because IL-12 blockade partly abrogated IFN-gamma secretion after stimulation. All granuloma cells released IL-12 (p70 and p40), and IL-12 production remained constant after anti-TGF-beta, anti-IL-10, recombinant IL-18, or antigen stimulation. C57 WT and IL-4-/- mouse granuloma cells expressed IL-12 receptor (IL-12R) beta1-subunit mRNA but little beta2 mRNA. TGF-beta or IL-10 blockade did not influence beta1 or beta2 mRNA expression. CBA mouse dispersed granuloma cells released no measurable IFN-gamma, produced IL-12 p70 and little p40, and expressed IL-12R beta2 and little beta1 mRNA. In T helper 2 (Th2) granulomas of C57BL/6 WT and IL-4-/- mice, cells produce IL-12 (for IFN-gamma production) and IL-10 and TGF-beta modulate IFN-gamma secretion via mechanisms independent of IL-12 and IL-12R mRNA regulation. We found substantial differences in control of granuloma IFN-gamma production and IL-12 circuitry in C57BL/6 and CBA mice.  相似文献   

13.
IL-18, formerly designated IFN-inducing factor, is a novel cytokine produced by activated macrophages. It synergizes with IL-12 in the induction of the development of Th1 cells and NK cells. To define the biological role of IL-18 in vivo, we have constructed a strain of mice lacking IL-18. Homozygous IL-18 knockout (-/-) mice are viable, fertile, and without evident histopathologic abnormalities. However, in contrast to the heterozygous (+/-) or wild-type (+/+) mice, which are highly resistant to the infection of the protozoan parasite Leishmania major, the IL-18-/- mice are uniformly susceptible. The infected IL-18-/- mice produced significantly lower levels of IFN-gamma and larger amounts of IL-4 compared with similarly infected +/- and +/+ mice. In contrast, when infected with the extracellular Gram-positive bacteria Staphylococcus aureus, the IL-18-/- mice developed markedly less septicemia than similarly infected wild-type (+/+) mice. However, the mutant mice developed significantly more severe septic arthritis than the control wild-type mice. This was accompanied by a reduction in the levels of Ag-induced splenic T cell proliferation, decreased IFN-gamma and TNF-alpha synthesis, but increased IL-4 production by the mutant mice compared with the wild-type mice. These results therefore provide direct evidence that IL-18 is not only essential for the host defense against intracellular infection, but it also plays a critical role in regulating the synthesis of inflammatory cytokines, and therefore could be an important target for therapeutic intervention.  相似文献   

14.
IL-18 (formerly known as IFN-gamma-inducing factor) enhances Th1 responses via effects that are thought to be dependent on and synergistic with IL-12. The potential for IL-18 to exert IL-12-independent effects in delayed-type hypersensitivity (DTH) responses was studied in a model of Th1-directed, DTH-mediated crescentic glomerulonephritis induced by planting an Ag in glomeruli of sensitized mice as well as in cutaneous DTH. Sensitized genetically normal (IL-12(+/+)) mice developed proteinuria and crescentic glomerulonephritis with a glomerular influx of DTH effectors (CD4(+) T cells, macrophages, and fibrin deposition) in response to the planted glomerular Ag. IL-12p40-deficient (IL-12(-/-)) mice showed significant reductions in crescent formation, proteinuria, and glomerular DTH effectors. Administration of IL-18 to IL-12(-/-) mice restored the development of histological (including effectors of DTH) and functional glomerular injury in IL-12(-/-) mice to levels equivalent to those in IL-12(+/+) mice. IL-18 administration to IL-12(-/-) mice increased glomerular ICAM-1 protein expression, but did not restore Ag-stimulated splenocyte IFN-gamma, GM-CSF, IL-2, or TNF-alpha production. Sensitized IL-12(+/+) mice also developed cutaneous DTH following intradermal challenge with the nephritogenic Ag. Cutaneous DTH was inhibited in IL-12(-/-) mice, but was restored by administration of IL-18. IL-12(+/+) mice given IL-18 developed augmented injury, with enhanced glomerular and cutaneous DTH, demonstrating the synergistic effects of IL-18 and IL-12 in DTH responses. These studies demonstrate that even in the absence of IL-12, IL-18 can induce in vivo DTH responses and up-regulate ICAM-1 without inducing IFN-gamma, GM-CSF, or TNF-alpha production.  相似文献   

15.
Th1-type immune responses, mediated by IL-12-induced IFN-gamma, protect the host from most viral infections. To investigate the role of IL-12 and IFN-gamma on the development of Coxsackievirus B3 (CB3)-induced myocarditis, we examined the level of inflammation, viral replication, and cytokine production in IL-12Rbeta1- and IFN-gamma-deficient mice following CB3 infection. We report that IL-12Rbeta1 deficiency results in decreased viral replication and inflammation in the heart, while IFN-gamma deficiency exacerbates CB3 replication. Importantly, decreased IL-1beta and IL-18 levels in IL-12Rbeta1-deficient hearts correlated directly with decreased myocardial inflammation. Because IL-1beta and IL-18 were associated with myocardial inflammation, we examined the effect of TLR4 deficiency on CB3 infection and myocarditis. We found that TLR4-deficient mice also had significantly reduced levels of myocarditis, viral replication, and IL-1beta/IL-18, just as we had observed in IL-12Rbeta1-deficient mice. This is the first report that TLR4 influences CB3 replication. These results show that IL-12Rbeta1 and TLR4 exacerbate CB3 infection and myocarditis while IFN-gamma protects against viral replication. The remarkable similarities between the effects of IL-12Rbeta1 and TLR4 suggest that these receptors share common downstream pathways that directly influence IL-1beta and IL-18 production, and confirm that IL-1beta and IL-18 play a significant role in the pathogenesis of CB3-induced myocarditis. These findings have important implications not only for the pathogenesis of myocarditis, but for other autoimmune diseases triggered by viral infections.  相似文献   

16.
17.
Intra-abdominal infection in patients following major visceral surgery is associated with high mortality. Using a macrophage depletion technique, we demonstrate that in murine septic peritonitis, Kupffer cells are a major source of systemic IL-10 levels. Kupffer cell-depleted mice were highly susceptible to the lethal effects of septic peritonitis and exhibited an increased bacterial load. Kupffer cell-depleted mice were protected by the administration of an IL-10-Fc fusion protein. Loss of Kupffer cell-derived IL-10 was associated with a weak increase in serum IL-12 levels, whereas TNF, IL-1alpha, and IL-18 levels were not significantly elevated, suggesting that the loss of Kupffer cell-derived IL-10 did not result in a toxic cytokine release syndrome. Instead, loss of Kupffer cell-derived IL-10 was associated with a reduced splenocyte production of IFN-gamma that is required for immune protection in murine septic peritonitis. Therefore, the results suggest that the protective function of IL-10 in septic peritonitis may not be restricted to the anti-inflammatory activities of IL-10.  相似文献   

18.
IL-23, a cytokine, which is composed of the p40 subunit shared with IL-12 and the IL-23-specific p19 subunit, has been shown to preferentially act on Th1 effector/memory CD4+ T cells and to induce their proliferation and IFN-gamma production. The IL-23 is also reported to act on Th17-CD4+ T cells, which are involved in inducing tissue injury. In this study, we examined the antitumor effects associated with systemic administration of IL-23 and their mechanisms in mouse tumor system. Systemic administration of high-dose IL-23 was achieved using in vivo electroporation of IL-23 plasmid DNA into the pretibial muscles of C57BL/6 mice. The IL-23 treatment was associated with significant suppression of the growth of pre-existing MCA205 fibrosarcoma and prolongation of the survival of treated mice without significant toxicity when compared with those of the mice treated with EGFP. Although the therapeutic outcomes were similar to those with the IL-12 treatment, the IL-23 treatment induced characteristic immune responses distinctive to those of IL-12 treatment. The IL-23 administration even at the therapeutic levels did not induce detectable IFN-gamma concentration in the serum. In vivo depletion of CD4+ T cells, CD8+ T cells, or NK cells significantly inhibited the antitumor effects of IL-23. Furthermore, the CD4+ T cells in the lymph nodes in the IL-23-treated mice showed significant IFN-gamma and IL-17 response upon anti-CD3 mAb stimulation in vitro. These results and the ones in the IFN-gamma or IL-12 gene knockout mice suggest that potent antitumor effects of IL-23 treatment could be achieved when the Th1-type response is fully promoted in the presence of endogenously expressed IL-12.  相似文献   

19.
The aim of this study was to evaluate the roles of IL-18 and IL-12 in potentiating the encephalitogenic activity of T cell lines specific for myelin oligodendrocyte glycoprotein (MOG(35-55)). MOG-specific T cells stimulated with anti-CD3 and anti-CD28 in the presence of IL-12 or IL-18 alone transferred only mild experimental autoimmune encephalomyelitis (EAE) into a low percentage of recipients. However, T cells cocultured with both cytokines transferred aggressive clinical and histological EAE into all recipients. Coculture of T cells with IL-12 enhanced the secretion of IFN-gamma, but not TNF-alpha, whereas coculture with IL-18 enhanced the secretion of TNF-alpha, but not INF-gamma. However, coculture with both IL-18 and IL-12 induced high levels of both TNF-alpha and IFN-gamma. Additionally, IL-12 selectively enhanced mRNA expression of CCR5, whereas IL-18 selectively enhanced the expression of CCR4 and CCR7, and CCR4 and CCR5 were coexpressed on the surface of T cells cocultured with IL-12 and IL-18. Finally, estrogen treatment, previously found to inhibit both TNF-alpha and IFN-gamma production, completely abrogated all signs of passive EAE. These data demonstrate that optimal potentiation of encephalitogenic activity can be achieved by conditioning MOG-specific T cells with the combination of IL-12 and IL-18, which, respectively, induce the secretion of IFN-gamma/CCR5 and TNF-alpha/CCR4/CCR7, and that estrogen treatment, which is known to inhibit both proinflammatory cytokines, can completely ablate this aggressive form of passive EAE.  相似文献   

20.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号