首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar ATPases (V-type ATPases) are a family of ATP-dependent ion pumps and found in two principal locations, in endomembranes and in plasma membranes. This family of ATPases is responsible for acidification of intracellulare compartments and, in certain cases, ion transport across the plasma membrane of eucaryotic cells. V-ATPases are composed of two distinct domains: a catalytic V1 sector, in which ATP hydrolysis takes place, and the membrane-embedded sector, V0, which functions in ion conduction. In the past decade impressive progress has been made in elucidating the properties structure, function and moleculare biology. These knowledge sheds light also on the evolution of V-ATPases and their related families of A-(A1A0-ATPase) and F-type (F1F0-ATPases)ATPases.  相似文献   

2.
Bafilomycin A1, a specific inhibitor of H+-ATPases of the vacuolar type, was in the present study shown, at similar concentrations, to induce secretion of lysosomal enzyme and to elevate lysosomal pH in mouse macrophages. These results lend support to the previous suggestion of a triggering role for an increase in lysosomal pH and a permissive role for cytosolic pH in the exocytosis of macrophage lysosomal enzyme. Vacuolar H+-ATPases are present in the macrophage plasma membrane as well as in intracellular membranes, for example, those of the lysosomal and phagosomal compartments. Phagosomal acidification was shown to be achieved in part by a mechanism with a similar sensitivity to bafilomycin A1 as lysosomal H+ transport and in part by an early, bafilomycin A1-insensitive mechanism. We found a lesser sensitivity towards bafilomycin A1 of the lysosomal and phagosomal H+-ATPase than that localized in the plasma membrane, indicating differences among H+-ATPases at the subcellular level. Also, by attempts to mobilize lysosomal H+-ATPase to the plasma membrane, support was obtained for the notion that subcellular H+-ATPase populations differ and thus possibly could be differentially regulated. © 1995 Wiley-Liss, Inc.  相似文献   

3.
V1-ATPase is a rotary motor protein that rotates the central shaft in a counterclockwise direction hydrolyzing ATP. Although the ATP-binding process is suggested to be the most critical reaction step for torque generation in F1-ATPase (the closest relative of V1-ATPase evolutionarily), the role of ATP binding for V1-ATPase in torque generation has remained unclear. In the present study, we performed single-molecule manipulation experiments on V1-ATPase from Thermus thermophilus to investigate how the ATP-binding process is modulated upon rotation of the rotary shaft. When V1-ATPase showed an ATP-waiting pause, it was stalled at a target angle and then released. Based on the response of the V1-ATPase released, the ATP-binding probability was determined at individual stall angles. It was observed that the rate constant of ATP binding (kon) was exponentially accelerated with forward rotation, whereas the rate constant of ATP release (koff) was exponentially reduced. The angle dependence of the koff of V1-ATPase was significantly smaller than that of F1-ATPase, suggesting that the ATP-binding process is not the major torque-generating step in V1-ATPase. When V1-ATPase was stalled at the mean binding angle to restrict rotary Brownian motion, kon was evidently slower than that determined from free rotation, showing the reaction rate enhancement by conformational fluctuation. It was also suggested that shaft of V1-ATPase should be rotated at least 277° in a clockwise direction for efficient release of ATP under ATP-synthesis conditions.  相似文献   

4.
The bacteriocin butyricin 7423 inhibited the activity of the membrane H+-ATPase (BF0, F1) of vegetative cells of Clostridium pasteurianum but not that of its soluble BF1 component. In vitro studies with the H+-ATPases of mutant strains selected for diminished sensitivity (a) to butyricin 7423 and (b) to dicyclohexylcarbodi-imide, confirmed that butyricin 7423 interacts with the BF0 component of this enzyme complex. Even so, certain other mutant strains displaying decreased sensitivity to butyricin 7423 possessed H+-ATPases which in vitro showed undiminished sensitivity to inhibition by the bacteriocin. Furthermore, from the changes in intracellular ATP concentration and in the rates and net extent of efflux of intracellular 86Rb+ ions that were provoked by exposure of the parent and several of the mutant strains to butyricin 7423, it was concluded that its primary bactericidal action was not attributable to stoichiometric inhibition of the membrane H+-ATPase. High extracellular concentrations of K+ ions enabled Cl. pasteurianum to survive exposure to low concentrations of this membrane-active bacteriocin.Non-standard abbreviations H+-ATPase proton translocating adenosine 5-triphosphatase (EC 3.6.1.3) - DCCD dicyclohexylcarbodiimide  相似文献   

5.
Ma B  Xiang Y  An L 《Cellular signalling》2011,23(8):1244-1256
Vacuolar-type H+-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V1 responsible for ATP hydrolysis, and subunits a, c, c′, c″, and d assembly the 250-kDa membrane-integral V0 harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V1 and V0 subunits, in which the V1 must be completely assembled prior to association with the V0, accordingly the V0 failing to assemble cannot provide a membrane anchor for the V1, thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V1 and V0, the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca2+, and its inhibitors and activators.  相似文献   

6.
V-ATPases are rotary molecular motors that generally function as proton pumps. We recently solved the crystal structures of the V1 moiety of Enterococcus hirae V-ATPase (EhV1) and proposed a model for its rotation mechanism. Here, we characterized the rotary dynamics of EhV1 using single-molecule analysis employing a load-free probe. EhV1 rotated in a counterclockwise direction, exhibiting two distinct rotational states, namely clear and unclear, suggesting unstable interactions between the rotor and stator. The clear state was analyzed in detail to obtain kinetic parameters. The rotation rates obeyed Michaelis-Menten kinetics with a maximal rotation rate (Vmax) of 107 revolutions/s and a Michaelis constant (Km) of 154 μm at 26 °C. At all ATP concentrations tested, EhV1 showed only three pauses separated by 120°/turn, and no substeps were resolved, as was the case with Thermus thermophilus V1-ATPase (TtV1). At 10 μm ATP (⪡Km), the distribution of the durations of the ATP-waiting pause fit well with a single-exponential decay function. The second-order binding rate constant for ATP was 2.3 × 106 m−1 s−1. At 40 mm ATP (⪢Km), the distribution of the durations of the catalytic pause was reproduced by a consecutive reaction with two time constants of 2.6 and 0.5 ms. These kinetic parameters were similar to those of TtV1. Our results identify the common properties of rotary catalysis of V1-ATPases that are distinct from those of F1-ATPases and will further our understanding of the general mechanisms of rotary molecular motors.  相似文献   

7.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

8.
《BBA》2014,1837(6):940-952
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H+, Na+ or even H+ and Na+ using enzymes. The evolution of the H+ binding site to a Na+ binding site and its implications for the energy metabolism and physiology of the cell are discussed.  相似文献   

9.
F1-ATPases transiently entrap inhibitory MgADP in a catalytic site during turnover when noncatalytic sites are not saturated with ATP. An initial burst of ATP hydrolysis rapidly decelerates to a slow intermediate rate that gradually accelerates to a final steady-state rate. Transition from the intermediate to the final rate is caused by slow binding of ATP to noncatalytic sites which promotes dissociation of inhibitory MgADP from the affected catalytic site. Evidence from several laboratories suggests that the γ subunit rotates with respect to α/β subunit pairs of F1-ATPases during ATP hydrolysis. The α3β3 and α3β3δ subcomplexes of the TF1-ATPase do not entrap inhibitory MgADP in a catalytic site during turnover, suggesting involvement of the γ subunit in the entrapment process. From these observations, it is proposed that the γ subunit moves into an abortive position for ATP hydrolysis when inhibitory MgADP is entrapped in a catalytic site during ATP hydrolysis.  相似文献   

10.
Nucleotide-metabolizing enzymes play important roles in the regulation of intracellular and extracellular nucleotide levels. We studied ATPase activity in the nervous ganglia of Phyllocaulis soleiformis, a terrestrial slug. The ATPase was divalent cation-dependent, with a maximal rate for ATP hydrolysis at pH 6.0 and 7.2 in the presence of Ca2+ (5 mM). Mg2+-ATPase activity was only 26% of the activity observed in the presence of Ca2+ (5 mM). ZnCl2 (10 mM) produced a significant inhibition of 70%. Ca2+-ATPase activity was insensitive to the classical ATPase inhibitors ouabain, N-ethylmaleimide, orthovanadate and sodium azide. Levamisole, an inhibitor of alkaline phosphatase, was ineffective. Among nucleotides, ATP was the best substrate. The apparent Km (ATP) for Ca2+-ATPase was 348±84 μM ATP and the Vmax was 829±114 nmol Pi min−1 mg−1 protein. The P. soleiformis ganglial ATPase does not appear to fit clearly into any of the previously described types of Ca2+-ATPases.  相似文献   

11.
A new method to estimate individual dry weights of rotifers   总被引:8,自引:7,他引:1  
Pauli  Hans Rainer 《Hydrobiologia》1989,186(1):355-361
Body and egg volumes of 12 rotifer species of Lake Constance were calculated from more than 18 000 individually measured animals using geometric approximations. Body (V A) and egg (V E) volumes of various rotifer species have an allometric relationship described by: V E = 1272 · V A 0.3379, while the relation V E/V A for each species was constant ranging from 0.016 to 0.87. Dry weight of adult rotifers was assumed to be the sum of the egg dry weight plus a corrected weight increment from egg to adult. It was estimated with the formula W A = W E · (1 + a · F A/F E) where (a) was varied between 0 and 0.1. Egg dry weight content was assumed to be 35 % of fresh weight. The estimates of dry weight to wet weight ratios ranged from 0.57 % (Asplanchna priodonta) to 29.4 % (Kellicottia longispina). Dry weight estimates obtained with this method are comparable to those obtained with direct measurements of dry weight or carbon content.This investigation was supported by the Deutsche Forschungsgemeinschaft within the Special Collaboration Program (SFB) Cycling of Matter in Lake Constance.  相似文献   

12.
A key structural element in the ion translocating F-, A-, and V-ATPases is the peripheral stalk, an assembly of two polypeptides that provides a structural link between the ATPase and ion channel domains. Previously, we have characterized the peripheral stalk forming subunits E and H of the A-ATPase from Thermoplasma acidophilum and demonstrated that the two polypeptides interact to form a stable heterodimer with 1:1 stoichiometry (Kish-Trier, E., Briere, L. K., Dunn, S. D., and Wilkens, S. (2008) J. Mol. Biol. 375, 673–685). To define the domain architecture of the A-ATPase peripheral stalk, we have now generated truncated versions of the E and H subunits and analyzed their ability to bind each other. The data show that the N termini of the subunits form an α-helical coiled-coil, ∼80 residues in length, whereas the C-terminal residues interact to form a globular domain containingα- and β-structure. We find that the isolated C-terminal domain of the E subunit exists as a dimer in solution, consistent with a recent crystal structure of the related Pyrococcus horikoshii A-ATPase E subunit (Lokanath, N. K., Matsuura, Y., Kuroishi, C., Takahashi, N., and Kunishima, N. (2007) J. Mol. Biol. 366, 933–944). However, upon the addition of a peptide comprising the C-terminal 21 residues of the H subunit (or full-length H subunit), dimeric E subunit C-terminal domain dissociates to form a 1:1 heterodimer. NMR spectroscopy was used to show that H subunit C-terminal peptide binds to E subunit C-terminal domain via the terminal α-helices, with little involvement of the β-sheet region. Based on these data, we propose a structural model of the A-ATPase peripheral stalk.The archaeal ATP synthase (A1A0-ATPase),2 along with the related F1F0- and V1V0-ATPases (proton pumping vacuolar ATPases), is a rotary molecular motor (14). The rotary ATPases are bilobular in overall architecture, with one lobe comprising the water-soluble A1, F1, or V1 and the other comprising the membrane-bound A0, F0, or V0 domain, respectively. The subunit composition of the A-ATPase is A3B3DE2FH2 for the A1 and CIKx for the A0. In the A1 domain, the three A and B subunits come together in an alternating fashion to form a hexamer with a hydrophobic inner cavity into which part of the D subunit is inserted. Subunits D and F comprise the central stalk connection to A0, whereas two heterodimeric EH complexes are thought to form the peripheral stalk attachment to A0 seen in electron microscopy reconstructions (5, 6). In the A0 domain (subunits CIKx), the K subunits (proteolipids) form a ring that is linked to the central stalk by the C subunit, whereas the cytoplasmic N-terminal domain of the I subunit probably mediates the binding of the EH peripheral stalks to A0, as suggested for the bacterial A/V-type enzyme (7). Although closer in structure to the proton-pumping V-ATPase, the A-ATPase functions in vivo as an ATP synthase, coupling ion motive force to ATP synthesis, most likely via a similar rotary mechanism as demonstrated for the bacterial A/V- and the vacuolar type enzymes (8, 9). During catalysis, substrate binding occurs sequentially on the three catalytic sites, which are formed predominantly by the A subunits. This is accompanied by conformation changes in the A3B3 hexamer that are linked to the rotation of the embedded D subunit together with the rotor subunits F, C, and the proteolipid ring. Each copy of K contains a lipid-exposed carboxyl residue (Asp or Glu), which is transiently interfaced with the membrane-bound domain of I during rotation, thereby catalyzing ion translocation. The EH peripheral stalks function to stabilize the A3B3 hexamer against the torque generated during rotation of the central stalk. Much work has been accomplished to elucidate the architectural features of the rotational and catalytic domains, especially in the related F- and V-type enzymes. However, the peripheral stalk complexes in the A- and V-type enzymes remain an area open to question. Although the stoichiometry of the peripheral stalks in the A/V-type and the vacuolar type ATPases have recently been resolved to two and three, respectively (6, 10), the overall structure of the peripheral stalk, including the nature of attachment to the A3B3 hexamer and I subunit (called subunit a in the F- and V-ATPase), is not well understood. Some structural information exists in the form of the A-ATPase E subunit C-terminal domain (11), although isolation from its binding partner H may have influenced its conformation.Previously, our lab has characterized the Thermoplasma acidophilum A-ATPase E and H subunits individually and in complex (12). We found that despite their tendency to oligomerize when isolated separately, upon mixing, E and H form a tight heterodimer that was monodisperse and elongated in solution, which is consistent with its role as the peripheral stalk element in the A-ATPase. Here, we have expanded our study of the A-ATPase EH complex through the production of various N- and C-terminal truncation mutants of both binding partners. The data show that the EH complex is comprised of two distinct domains, one that contains both N termini interacting via a coiled-coil and a second that contains both C termini folded in a globular structure containing mixed secondary structure. Consistent with recent crystallographic data for the related A-ATPase from Pyrococcus horikoshii (11), we found that the isolated C-terminal domain of the E subunit exists as a stable homodimer in solution. However, the addition of subunit H or a peptide consisting of the 21 C-terminal residues of the subunit to the dimeric C-terminal domain of subunit E resulted in dissociation of the homodimer with concomitant formation of a 1:1 heterodimer containing the C termini of both polypeptides. This study delineates and characterizes the two domains of the EH complex and will aid in the further exploration of the nature of peripheral stalk attachment and function in the intact A1A0-ATPase.  相似文献   

13.
Summary Dunaliella acidophila is an unicellular green alga which grows optimally at pH 0–1 while maintaining neutral internal pH. A plasma membrane preparation of this algae has been purified on sucrose density gradients. The preparation exhibits vanadatesensitive ATPase activity of 2 mol Pi/mg protein/min, an activity 15 to 30-fold higher than that in the related neutrophilic speciesD. salina. The following properties suggest that the ATPase is an electrogenic plasma membrane H+ pump. (i) ATP induces proton uptake and generates a positive-inside membrane potential as demonstrated with optical probes. (ii) ATP hydrolysis and proton uptake are inhibited by vanadate, diethylstilbestrol, dicyclohexylcarbodiimide and erythrosine but not by molybdate, azide or nitrate. (iii) ATP hydrolysis and proton uptake are stimulated by fussicoccin in a pH-dependent manner as found for plants plasma membrane H+-ATPase. Unusual properties of this enzyme are: (i) theK m for ATP is around 60 M, considerably lower than in other plasma membrane H+-ATPases, and (ii) the ATPase activity and proton uptake are stimulated three to fourfold by K+ and to a smaller extent by other monovalent cations. These results suggest thatD. acidophila possesses a vanadate-sensitive H+-ATPase with unusual features enabling it to maintain the large transmembrane pH gradient.  相似文献   

14.
Immuno-electron microscopy of negatively stained isolated tonoplast vesicles was used to quantify stress responses of the H+-transporting tonoplast ATPase (V0V1-ATPase; EC 3.6.1.1) of the C3/CAM intermediate Mesembryanthemum crystallinum L. and the C3 plant Hordeum vulgare L. This approach has the advantage that it relates quantitative adaptations at the level of membrane enzymes directly to membrane area and thus is independent of concomitant changes of relative amounts of other membrane proteins which may perturb conclusions when data are expressed on a tonoplast protein basis. It was shown that in M. crystallinum the amount of V0V1-ATPase per unit membrane area increased slightly with ageing and pronouncedly with salinity stress. In H. vulgare under salt stress there was an increase in V0V1-ATPase amount only in the highly salt tolerant cv. California Mariout and not in the moderately tolerant cv. Carina. This corroborates conclusions from earlier work, where results were expressed on a protein basis, although this was not to be expected a priori. In all comparative ecophysiological studies using tonoplast vesicles at least some key-point tests with the immunonegative staining technique should be included for the sake of prudence. The data obtained here via immunonegative staining of isolated tonoplast vesicles are in very close agreement with much earlier assessments of area and whole cell-related activities given by measurements of entire isolated vacuoles and morphometric analysis, which further corroborates the suitability of the approaches. The data presented here for the first time allow calculations of the coverage of the tonoplast surface of M. crystallinum with V0V1-ATPase holoenzyme protein and with total tonoplast protein, i.e. 1.5 to 2.3 . 10?15 g V0V1-ATPase per μm2 and 7.4 to 8.8 . 10?15 g protein per μm2, respectively.  相似文献   

15.
Over the last few decades there has been increasing interest in oxometalate and polyoxometalate applications to medicine and pharmacology. This interest arose, at least in part, due to the properties of these classes of compounds as anti-cancer, anti-diabetic agents, and also for treatment of neurodegenerative diseases, among others. However, our understanding of the mechanism of action would be improved if biological models could be used to clarify potential toxicological effects in main cellular processes. Sarcoplasmic reticulum (SR) vesicles, containing a large amount of Ca2 +-ATPase, an enzyme that accumulates calcium by active transport using ATP, have been suggested as a useful model to study the effects of oxometalates on calcium homeostasis. In the present article, it is shown that decavanadate, decaniobate, vanadate, tungstate and molybdate, all inhibited SR Ca2+-ATPase, with the following IC50 values: 15, 35, 50, 400 μM and 45 mM, respectively. Decaniobate (Nb10), is the strongest P-type enzyme inhibitor, after decavanadate (V10). Atomic-absorption spectroscopy (AAS) analysis, indicates that decavanadate binds to the protein with a 1:1 decavanadate:Ca2 +-ATPase stoichiometry. Furthermore, V10 binds with similar extension to all the protein conformations, which occur during calcium translocation by active transport, namely E1, E1P, E2 and E2P, as analysed by AAS. In contrast, it was confirmed that the binding of monomeric vanadate (H2VO42 −; V1) to the calcium pump is favoured only for the E2 and E2P conformations of the ATPase, whereas no significant amount of vanadate is bound to the E1 and E1P conformations. Scatchard plot analysis, confirmed a 1:1 ratio for decavanadate-Ca2 +-ATPase, with a dissociation constant, kd of 1 μM− 1. The interaction of decavanadate V10O286 − (V10) with Ca2 +-ATPase is prevented by the isostructural and isoelectronic decaniobate Nb10O286 − (Nb10), whereas no significant effects were detected with ATP or with heparin, a known competitive ATP binding molecule, suggesting that V10 binds non-competitively, with respect to ATP, to the protein. Finally, it was shown that decaniobate inhibits SR Ca2 +-ATPase activity in a non competitive type of inhibition, with respect to ATP. Taken together, these data demonstrate that decameric niobate and vanadate species are stronger inhibitors of the SR calcium ATPase than simple monomeric vanadate, tungstate and molybdate oxometalates, thus affecting calcium homeostasis, cell signalling and cell bioenergetics, as well many other cellular processes. The ability of these oxometalates to act either as phosphate analogues, as a transition-state analogue in enzyme-catalysed phosphoryl group transfer processes and as potentially nucleotide-dependent enzymes modulators or inhibitors, suggests that different oxometalates may reveal different mechanistic preferences in these classes of enzymes.  相似文献   

16.
This article reviews the current status of information regarding the role of energy in the process of oxidative phosphorylation by mitochondria. The available data suggest that in submitochondrial particles (SMP) energy is utilized for the binding of ADP and Pi and for the release of ATP bound at the catalytic sites of F1-ATPase. The process of ATP synthesis on the surface of F1 from F1-bound ADP and Pi appears to be associated with negligible free energy change. The rate of energy production by the respiratory chain modulates the kinetics of ATP synthesis between a lowK m (for ADP and Pi)-lowV max mode and a highK m -highV max mode. TheK m extremes for ADP are 2–3 µM and 120–150 µM, andV max for ATP synthesis at high rates of energy production by bovine-heart SMP is about 440 s–1 (mole F1)–1 at 30°C, which corresponds to 11 µmol ATP (min · mg of protein)–1. The interaction of dicyclohexylcarbodiimide (DCCD) or oligomycin at the proteolipid (subunitc) of the membrane sector (F0) of the ATP synthase complex alters the mode of ATP binding at the catalytic sites of F1, probably to one of lower affinity. It has been suggested that protonic energy might be conveyed to the catalytic sites of F1 in an analogous manner, i.e., via conformation changes in the ATP synthase complex initiated by proton-induced alterations in the structure of the DCCD-binding proteolipid. Finally, the relationship between the steady-state membrane potential () and the rates of electron transfer and ATP synthesis has been discussed. It has been shown, in agreement with the delocalized chemiosmotic mechanism, that under appropriate conditions is exquisitely sensitive to changes in the rates of energy production and consumption.  相似文献   

17.
The multi-subunit vacuolar-type H+-ATPase consists of a V1 domain (A–H subunits) catalyzing ATP hydrolysis and a V0 domain (a, c, c', c", d, e) responsible for H+ translocation. The mammalian V0 d subunit is one of the least-well characterized, and its function and position within the pump are still unclear. It has two different forms encoded by separate genes, d1 being ubiquitous while d2 is predominantly expressed at the cell surface in kidney and osteoclast. To determine whether it forms part of the pump’s central stalk as suggested by bacterial A-ATPase studies, or is peripheral as hypothesized from a yeast model, we investigated both human d subunit isoforms. In silico structural modelling demonstrated that human d1 and d2 are structural orthologues of bacterial subunit C, despite poor sequence identity. Expression studies of d1 and d2 showed that each can pull down the central stalk’s D and F subunits from human kidney membrane, and in vitro studies using D and F further showed that the interactions between these proteins and the d subunit is direct. These data indicate that the d subunit in man is centrally located within the pump and is thus important in its rotary mechanism.  相似文献   

18.
The H+-ATPase activities of root and leaf plasma membranes from tobacco (Nicotiana tabacum) have been characterized with respect to Vmax, Km for ATP, pH dependence and activation involving the C-terminal autoinhibitory domain. With root plasma membranes, addition of lysophosphatidylcholine (lyso-PC) resulted in the expected increase in Vmax, a decrease in Km(ATP), and a shift in pH optimum to a more alkaline pH, typical for activation via the C-terminal inhibitory domain. With leaf plasma membranes, however, Km(ATP) was relatively low and the pH optimum was around pH 7.0 before the addition of lyso-PC and did not change upon addition of the activator, although Vmax increased twofold. Similar results were obtained with the in vivo activator fusicoccin. The results obtained with the leaf plasma membranes show that Vmax may be regulated independently of Km(ATP) and pH optimum, and suggest the presence of at least two regulatory sites within the C-terminal autoinhibitory domain of the H+-ATPase.  相似文献   

19.
We have investigated the localization of a set of intrinsic ATPase activities associated with purified synaptic plasma membranes and consisting of (a) a Mg2+-ATPase; (b) an ATPase active at high concentrations of Ca2+ in the absence of Mg2+ (CaH-ATPase); (c) a Ca2+ requiring Mg2+-dependent ATPase (Ca + Mg)-ATPase, stimulated by calmodulin (Ca-CaM-ATPase); (d) a Ca2+-dependent ATPase stimulated by dopamine (DA-ATPase); and (e) the ouabain-sensitive (Na + K)-ATPase. The following results were obtained: (1) All ATPases are largely confined to the presynaptic membrane; (2) the DA-, (Ca + Mg)-, (Ca-CaM)-, and (Na + K)-ATPases are oriented with their ATP hydrolysis sites facing the synaptoplasm; (3) the Mg- and CaH-ATPases are oriented with their ATP hydrolysis sites on the junctional side of the presynaptic membrane and are therefore classified as ecto-ATPases of as yet unknown function.  相似文献   

20.
A spontaneous mutant of Methanothermobacter thermautotrophicus resistant toward the ATP-synthase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD) was isolated. DCCD normally inhibits methanogenic electron-transport-driven ATP synthesis, however, the DCCD-resistant strain exhibited methanogenesis in the presence of 300 μmol/L DCCD. Total ATP synthesis was shown to be higher in the mutant strain, both in the presence and absence of DCCD. These results suggested a modification in the ATP-synthesizing system of the mutant strain. Using Blue Native PAGE combined with MALDI TOF/TOF mass spectrometry, increased concentrations of both the A1 and Ao subcomplexes of the A1Ao-type synthase were identified in the mutant strain. However, no alterations were found in the structural genes (atp) for the A1Ao ATP synthase. The results imply that DCCD resistance is a consequence of increased A1Ao ATP synthase expression, and suggest that genes involved in regulating synthase expression are responsible for DCCD resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号