首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tight control of apoptosis is required for proper development and maintenance of homeostasis in multicellular organisms. Cells can protect themselves from potentially lethal stimuli by expressing antiapoptotic factors, such as inhibitors of apoptosis, FLICE (caspase 8)-inhibitory proteins, and members of the Bcl2 family. Here, we describe a mechanism that allows cells to survive once executioner caspases have been activated. This mechanism relies on the partial cleavage of RasGAP by caspase 3 into an amino-terminal fragment called fragment N. Generation of this fragment leads to the activation of the antiapoptotic Akt kinase, preventing further amplification of caspase activity. Partial cleavage of RasGAP is required for cell survival under stress conditions because cells expressing an uncleavable RasGAP mutant cannot activate Akt, cannot prevent amplification of caspase 3 activity, and eventually undergo apoptosis. Executioner caspases therefore control the extent of their own activation by a feedback regulatory mechanism initiated by the partial cleavage of RasGAP that is crucial for cell survival under adverse conditions.  相似文献   

3.
Reactive oxygen species (ROS) and caspases 8, 9, and 3 are reported to be crucial players in apoptosis induced by various stimuli. Recently, caspase 2 has been implicated in stress-induced apoptosis but the exact mechanism remains unclear. In this study, we report that ROS generation led to activation of caspase 2 during beta-carotene-induced apoptosis in the human leukemic T cell line Molt 4. The apoptosis progressed by simultaneous activation of caspases 8 and 9, and a cross talk between these initiator caspases was mediated by the proapoptotic protein Bid. Inhibition of caspases 2, 8, 9, and 3 independently suppressed the caspase cascade. The kinetics and function of caspase 2 were similar to those of caspase 3, suggesting its role as an effector caspase. Interestingly, beta-carotene-induced apoptosis was caspase 2 dependent but caspase 3 independent. The study also revealed cleavage of the antiapoptotic protein BclXL as an important event during apoptosis, which was regulated by ROS. The mechanistic studies identify a functional link between ROS and the caspase cascade involving caspase 2 and cleavage of BclXL. The interdependence of caspases 8, 9, 2, and 3 in the cascade provides evidence for the presence of an extensive feedback amplification loop in beta-carotene-induced apoptosis in Molt 4 cells.  相似文献   

4.
Caspases have been implicated in the induction of apoptosis in most systems studied. The importance of caspases for apoptosis was further investigated using the system of didemnin B-induced apoptosis. We found that benzyloxycarbonyl-VAD-fluoromethylketone, a general caspase inhibitor, inhibits didemnin B-induced apoptosis in HL-60 and Daudi cells. Acetyl-YVAD-chloromethylketone, a caspase-1-like activity inhibitor, inhibits didemnin B-induced apoptosis in Daudi cells, whereas the caspase-3-like activity inhibitor, acetyl-DEVD-aldehyde, has no effect. Using immunoblots to investigate cleavage of caspases-1 and -3, we found that both caspases are activated in both cell lines. We showed that the caspase substrate poly(ADP-ribose)polymerase is cleaved in these cells after didemnin B treatment. In both cell lines, poly(ADP-ribose)polymerase cleavage is inhibited by benzyloxycarbonyl-VAD-fluoromethylketone and also by acetyl-YVAD-chloromethylketone in Daudi cells. These results indicate that a caspase(s) other than caspase-3 is required for didemnin B-induced apoptosis. We show that caspases may be activated during apoptosis that are not required for the progression of apoptosis.  相似文献   

5.
Caspases orchestrate the controlled demise of a cell after an apoptotic signal through specific protease activity and cleavage of many substrates altering protein function and ensuring apoptosis proceeds efficiently. Comparing a variety of substrates of each apoptotic caspase (2, 3, 6, 7, 8, 9 and 10) showed that the cleavage sites had a general motif, sometimes specific for one caspase, but other times specific for several caspases. Using commercially available short peptide-based substrates and inhibitors the promiscuity for different cleavage motifs was indicated, with caspase-3 able to cleave most substrates more efficiently than those caspases to which the substrates are reportedly specific. In a cell-free system, immunodepletion of caspases before or after cytochrome c-dependent activation of the apoptosome indicated that the majority of activity on synthetic substrates was dependent on caspase-3, with minor roles played by caspases-6 and -7. Putative inhibitors of individual caspases were able to abolish all cytochrome c-induced caspase activity in a cell-free system and inhibit apoptosis in whole cells through the extrinsic and intrinsic pathways, raising issues regarding the use of such inhibitors to define relevant caspases and pathways. Finally, caspase activity in cells lacking caspase-9 displayed substrate cleavage activity of a putative caspase-9-specific substrate underlining the lack of selectivity of peptide-based substrates and inhibitors of caspases.  相似文献   

6.
Interdimer processing mechanism of procaspase-8 activation   总被引:12,自引:0,他引:12  
Chang DW  Xing Z  Capacio VL  Peter ME  Yang X 《The EMBO journal》2003,22(16):4132-4142
The execution of apoptosis depends on the hierarchical activation of caspases. The initiator procaspases become autoproteolytically activated through a less understood process that is triggered by oligomerization. Procaspase-8, an initiator caspase recruited to death receptors, is activated through two cleavage events that proceed in a defined order to generate the large and small subunits of the mature protease. Here we show that dimerization of procaspase-8 produces enzymatically competent precursors through the stable homophilic interaction of the procaspase-8 protease domain. These dimers are also more susceptible to processing than individual procaspase-8 molecules, which leads to their cross-cleavage. The order of the two interdimer cleavage events is maintained by a sequential accessibility mechanism: the separation of the large and small subunits renders the region between the large subunit and prodomain susceptible to further cleavage. In addition, the activation process involves an alteration in the enzymatic properties of caspase-8; while procaspase-8 molecules specifically process one another, mature caspases only cleave effector caspases. These results reveal the key steps leading to the activation of procaspase-8 by oligomerization.  相似文献   

7.
Proteases for cell suicide: functions and regulation of caspases.   总被引:20,自引:0,他引:20  
Caspases are a large family of evolutionarily conserved proteases found from Caenorhabditis elegans to humans. Although the first caspase was identified as a processing enzyme for interleukin-1beta, genetic and biochemical data have converged to reveal that many caspases are key mediators of apoptosis, the intrinsic cell suicide program essential for development and tissue homeostasis. Each caspase is a cysteine aspartase; it employs a nucleophilic cysteine in its active site to cleave aspartic acid peptide bonds within proteins. Caspases are synthesized as inactive precursors termed procaspases; proteolytic processing of procaspase generates the tetrameric active caspase enzyme, composed of two repeating heterotypic subunits. Based on kinetic data, substrate specificity, and procaspase structure, caspases have been conceptually divided into initiators and effectors. Initiator caspases activate effector caspases in response to specific cell death signals, and effector caspases cleave various cellular proteins to trigger apoptosis. Adapter protein-mediated oligomerization of procaspases is now recognized as a universal mechanism of initiator caspase activation and underlies the control of both cell surface death receptor and mitochondrial cytochrome c-Apaf-1 apoptosis pathways. Caspase substrates have bene identified that induce each of the classic features of apoptosis, including membrane blebbing, cell body shrinkage, and DNA fragmentation. Mice deficient for caspase genes have highlighted tissue- and signal-specific pathways for apoptosis and demonstrated an independent function for caspase-1 and -11 in cytokine processing. Dysregulation of caspases features prominently in many human diseases, including cancer, autoimmunity, and neurodegenerative disorders, and increasing evidence shows that altering caspase activity can confer therapeutic benefits.  相似文献   

8.
Activation of p53 induces apoptosis in various cell types. However, the mechanism by which p53 induces apoptosis is still unclear. We reported previously that the activation of a temperature-sensitive mutant p53 (p53(138Val)) induced activation of caspase 3 and apoptosis in Jurkat cells. To elucidate the pathway linking p53 and downstream caspases, we examined the activation of caspases 8 and 9 in apoptotic cells. The results showed that both caspases were activated during apoptosis as judged by the appearance of cleavage products from procaspases and the caspase activities to cleave specific fluorogenic substrates. The significant inhibition of apoptosis by a tetrapeptide inhibitor of caspase 8 and caspase 9 suggested that both caspases are required for apoptosis induction. In addition, the membrane translocation of Bax and cytosolic release of cytochrome c, but not loss of mitochondrial membrane potential, were detected at an early stage of apoptosis. Moreover, Bax translocation, cytochrome c release, and caspase 9 activation were blocked by the broad-spectrum caspase inhibitor, Z-VAD-fmk and the caspase 8-preferential inhibitor, Ac-IETD-CHO, suggesting that the mitochondria might participate in apoptosis by amplifying the upstream death signals. In conclusion, our results indicated that activation of caspase 8 or other caspase(s) by p53 triggered the membrane translocation of Bax and cytosolic release of cytochrome c, which might amplify the apoptotic signal by activating caspase 9 and its downstream caspases.  相似文献   

9.
Caspases are considered to be the key effector proteases of apoptosis. Initiator caspases cleave and activate downstream executioner caspases, which are responsible for the degradation of numerous cellular substrates. We studied the role of caspases in apoptotic cell death of a human melanoma cell line. Surprisingly, the pancaspase inhibitor zVAD-fmk was unable to block cleavage of poly(ADP-ribose) polymerase (PARP) after treatment with etoposide, while it did prevent DEVDase activity. It is highly unlikely that caspase-2, which is a relatively zVAD-fmk-resistant caspase, is mediating etoposide-induced PARP cleavage, as a preferred inhibitor of this caspase could not prevent cleavage. In contrast, caspase activation and PARP degradation were blocked by pretreatment of the cells with the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF). We therefore conclude that a serine protease regulates an alternative initiation mechanism that leads to caspase activation and PARP cleavage. More importantly, while zVAD-fmk could not rescue melanoma cells from etoposide-induced death, the combination with AEBSF resulted in substantial protection. This indicates that this novel pathway fulfills a critical role in the execution of etoposide-induced programmed cell death.  相似文献   

10.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

11.
Posttranslational modifications that involve either reversible covalent modification of proteins or irreversible proteolysis are central to the regulation of key cellular mechanisms, including apoptosis, cell-cycle regulation and signal transduction. There is mounting evidence suggesting cross-talk between proteases and kinases. For instance: caspases, a class of proteases involved in programmed cell death—apoptosis, cleave a large set of various types of proteins. Simultaneously, kinases restrict caspase activity by phosphorylating their protein substrates in the vicinity of cleavage site. In addition, the caspase cleavage pattern in target proteins may be modified as a result of single nucleotide polymorphisms (SNPs) in the coding gene. This may either create a novel cleavage site, or increase/decrease the cleavage efficiency of a substrate. Such point mutations are often associated with the onset of disease. In this study, we predicted how phosphorylation and SNPs affect known human caspase proteolytic events collected in the CASBAH and Degrabase databases by applying Random Forest caspases’ substrates prediction method, as implemented in the CaspDB, and the molecular dynamics free energy simulations approach. Our analysis confirms several experimental observations. Phosphorylation could have both positive or negative regulatory effects depending on its position with respect to the caspase cleavage site. For instance, we demonstrate that phosphorylation at P1′ is the most detrimental for proteolytic efficiency of caspases. Phosphorylation at the P2 and P2′ positions also negatively affect the cleavage events. In addition, we uncovered SNPs in 11 caspase substrates capable of completely abolishing the cleavage site due to polymorphism at the P1 position. The findings presented here may be useful for determining the link between aberrant proteolysis and disease.  相似文献   

12.
Caspase activation during apoptosis occurs in a cascade from the initiator caspase(s) (e.g. caspase-8) to the effector caspases (e.g. caspase-3), which ensures the generation of large amounts of active caspases to dismantle cells. However, the mechanism that safeguards against inadvertent caspase activation is not well understood. Previous studies have suggested that the activation of procaspase-8 is mediated by cross-cleavage of precursor dimers, formed upon apoptosis induction, which are not only enzymatically competent but also highly susceptible to cleavage, and that procaspase-8 activation is a linear process without self-amplification. Effector procaspases constitutively exist as dimers and their activation is started by trans-cleavage by an initiator caspase followed by autocleavage of effector caspases. Here we show that the dimerization of caspase-3 molecules through their protease domains is required for their processing by initiator caspases. The subsequent autoprocessing takes place through cleavage between the dimeric intermediates. Moreover, mature caspase-3 fails to process its own precursor. Thus, despite a marked difference in the generation of active intermediates, the activation of initiator and effector caspases shares the features of interdimer cleavage and lack of self-amplification. These features may be important in preventing accidental cell death.  相似文献   

13.
Phosphoinositides such as phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate promote cell survival and protect against apoptosis by activating Akt/PKB, which phosphorylates components of the apoptotic machinery. We now report that another phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2) is a direct inhibitor of initiator caspases 8 and 9, and their common effector caspase 3. PIP2 inhibited procaspase 9 processing in cell extracts and in a reconstituted procaspase 9/Apaf1 apoptosome system. It inhibited purified caspase 3 and 8 activity, at physiologically attainable PIP2 levels in mixed lipid vesicles. Caspase 3 binding to PIP2 was confirmed by cosedimentation with mixed lipid vesicles. Overexpression of phosphatidylinositol phosphate 5-kinase alpha (PIP5KIalpha), which synthesizes PIP2, suppressed apoptosis, whereas a kinase-deficient mutant did not. Protection by the wild-type PIP5KIalpha was accompanied by decreases in the generation of activated caspases and of caspase 3-cleaved PARP. Protection was not mediated through PIP3 or Akt activation. An anti-apoptotic role for PIP(2) is further substantiated by our finding that PIP5KIalpha was cleaved by caspase 3 during apoptosis, and cleavage inactivated PIP5KIalpha in vitro. Mutation of the P(4) position (D279A) of the PIP5KIalpha caspase 3 cleavage consensus prevented cleavage in vitro, and during apoptosis in vivo. Significantly, the caspase 3-resistant PIP5KIalpha mutant was more effective in suppressing apoptosis than the wild-type kinase. These results show that PIP2 is a direct regulator of apical and effector caspases in the death receptor and mitochondrial pathways, and that PIP5KIalpha inactivation contributes to the progression of apoptosis. This novel feedforward amplification mechanism for maintaining the balance between life and death of a cell works through phosphoinositide regulation of caspases and caspase regulation of phosphoinositide synthesis.  相似文献   

14.
Although much is known about the multiple mechanisms which induce apoptosis, comparatively little is understood concerning the execution phase of apoptosis and the mechanism(s) of cell killing. Several reports have demonstrated that cellular translation is shut off during apoptosis; however, details of the mechanism of translation inhibition are lacking. Translation initiation factor 4G (eIF4G) is a crucial protein required for binding cellular mRNA to ribosomes and is known to be cleaved as the central part of the mechanism of host translation shutoff exerted by several animal viruses. Treatment of HeLa cells with the apoptosis inducers cisplatin and etoposide resulted in cleavage of eIF4G, and the extent of its cleavage correlated with the onset and extent of observed inhibition of cellular translation. The eIF4G-specific cleavage activity could be measured in cell lysates in vitro and was inhibited by the caspase inhibitor Ac-DEVD-CHO at nanomolar concentrations. A combination of in vivo and in vitro inhibitor studies suggest the involvement of one or more caspases in the activation and execution of eIF4G cleavage. Furthermore recombinant human caspase 3 was expressed in bacteria, and when incubated with HeLa cell lysates, was shown to produce the same eIF4G cleavage products as those observed in apoptotic cells. In addition, purified caspase 3 caused cleavage of purified eIF4G, demonstrating that eIF4G could serve as a substrate for caspase 3. Taken together, these data suggest that cellular translation is specifically inhibited during apoptosis by a mechanism involving cleavage of eIF4G, an event dependent on caspase activity.  相似文献   

15.
Erythropoietin (EP) is required by late stage erythroid progenitor cells to prevent apoptosis. In a previous study (Gregoli and Bondurant, 1997, Blood 90:630-640), it was shown that rapid proteolytic conversion of procaspase 3 to the fully activated enzyme occurred when erythroblasts were deprived of EP for as little as 2 h. In the present study, protein and mRNA analyses of erythroblasts indicated the presence of the proenzyme precursors of caspases 1, 2, 3, 5, 6, 7, 8, and 9. The effects of various caspase inhibitors on caspase 3 processing and on apoptosis were examined. These inhibitors were benzyloxycarbonyl (z-) and fluoromethyl-ketone (FMK) derivatives of peptides that serve as substrates for selected caspases. z-VAD-FMK, t-butoxycarbonyl-aspartate-FMK (Boc-D-FMK), and z-IETD-FMK blocked the initial cleavage of procaspase 3, while z-DEVD-FMK, z-VEID-FMK, and z-VDVAD-FMK did not block the initial cleavage but had some effect on blocking apoptosis. The peptide inhibitor z-FA-FMK, which inhibits cathepsins B and L but is not known to inhibit caspases, altered caspase 3 processing to a final 19 kDa large subunit that appeared to retain enzymatic activity. The action of z-FA-FMK in preventing the usual conversion to a 1 7 kDa subunit suggests the possibility that a noncaspase protease may be involved in caspase 3 processing. Studies with the peptide inhibitors and EP were done to determine the short- and long-term effectiveness of the caspase inhibitors in protecting EP-deprived cells from apoptosis. Although several of the inhibitors were effective, z-IETD-FMK was studied most extensively because of its specificity for enzymes which cleave procaspase 3 at aspartate 175 (IETD175). Large percentages of EP-deprived erythroblasts treated with z-IETD-FMK appeared morphologically normal and negative by a DNA strand breakage (TUNEL) assay at 24 h (75%) compared to EP-deprived controls (10%) which were not treated with inhibitor. However, inhibitor-treated erythroid progenitors deprived of EP for 24 h and then resupplied with EP showed only a modest improvement in long-term survival compared to cells which did not receive the caspase inhibitor during the 24 h EP deprivation. Thus, while the manifestations of apoptosis were delayed in most cells by inhibiting caspase activity, the processes initiating the loss of cell viability due to EP deprivation were irreparablein the majority of the cells and eventually led to their deaths.  相似文献   

16.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

17.
Recent developments in the apoptosis field have uncovered a family of cysteine proteases, the Caspases, that act as signalling components as well as effectors of the cell death machinery. Caspases are constitutively present as inactive precursors within most cells and undergo proteolytic processing in response to diverse death-inducing stimuli to initiate the death programme. Active caspases can process other caspases of the same type as well as process caspases further downstream in the pathway that ultimately leads to collapse of the cell. This cellular collapse is thought to occur as a consequence of caspase-mediated cleavage of a diverse array of cellular substrates. Regulation of entry into the death programme is controlled at a number of levels by members of the Bcl-2 family, as well as by other cell death regulatory proteins. Recent data has shed light upon the mechanism of action of these regulatory molecules and suggests that the point of caspase activation is a major checkpoint in the cell death programme. Because many transformed cell populations possess derangements in cell death-regulatory genes, such as bcl-2, such cells frequently exhibit elevated resistance to cytotoxic chemotherapy. Thus, a deeper understanding of how apoptosis is normally regulated has therapeutic implications for disease states where the normal controls on the cell death machinery have been subverted. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Activation of caspases 3 and 9 is thought to commit a cell irreversibly to apoptosis. There are, however, several documented situations (e.g., during erythroblast differentiation) in which caspases are activated and caspase substrates are cleaved with no associated apoptotic response. Why the cleavage of caspase substrates leads to cell death in certain cases but not in others is unclear. One possibility is that some caspase substrates generate antiapoptotic signals when cleaved. Here we show that RasGAP is one such protein. Caspases cleave RasGAP into a C-terminal fragment (fragment C) and an N-terminal fragment (fragment N). Fragment C expressed alone induces apoptosis, but this effect could be totally blocked by fragment N. Fragment N could also block apoptosis induced by low levels of caspase 9. As caspase activity increases, fragment N is further cleaved into fragments N1 and N2. Apoptosis induced by high levels of caspase 9 or by cisplatin was strongly potentiated by fragment N1 or N2 but not by fragment N. The present study supports a model in which RasGAP functions as a sensor of caspase activity to determine whether or not a cell should survive. When caspases are mildly activated, the partial cleavage of RasGAP protects cells from apoptosis. When caspase activity reaches levels that allow completion of RasGAP cleavage, the resulting RasGAP fragments turn into potent proapoptotic molecules.  相似文献   

19.
Signal-induced activation of caspases, the critical protease effectors of apoptosis, requires proteolytic processing of their inactive proenzymes. Consequently, regulation of procaspase processing is critical to apoptotic execution. We report here that baculovirus pancaspase inhibitor P35 and inhibitor of apoptosis Op-IAP prevent caspase activation in vivo, but at different steps. By monitoring proteolytic processing of endogenous Sf-caspase-1, an insect group II effector caspase, we show that Op-IAP blocked the first activation cleavage at TETD downward arrowG between the large and small caspase subunits. In contrast, P35 failed to affect this cleavage, but functioned downstream to block maturation cleavages (DXXD downward arrow(G/A)) of the large subunit. Substitution of P35's reactive site residues with TETDG failed to increase its effectiveness for blocking TETD downward arrowG processing of pro-Sf-caspase-1, despite wild-type function for suppressing apoptosis. These data are consistent with the involvement of a novel initiator caspase that is resistant to P35, but directly or indirectly inhibitable by Op-IAP. The conservation of TETD downward arrowG processing sites among insect effector caspases, including Drosophila drICE and DCP-1, suggests that in vivo activation of these group II caspases involves a P35-insensitive caspase and supports a model wherein apical and effector caspases function through a proteolytic cascade to execute apoptosis in insects.  相似文献   

20.
Cleavage of caspase substrates is believed to be the commitment point that will lead a cell towards apoptosis. While the cleavage of some caspase substrates participates directly in the dismantling of the cell, others regulate the extent of caspase activation. In this communication, we discuss some recent findings indicating that two caspase substrates, MEKK1 and RasGAP, change their functions from anti- to pro-apoptotic as caspase activity increases. MEKK1 is a MAPK kinase kinase regulating the JNK MAPK pathway. As a full-length protein, MEKK1 generates protective signals (e.g. in cardiomyocytes), but potentiates apoptosis when cleaved by caspases. This switch is mediated by a translocation of the kinase activity from insoluble to soluble cellular structures. RasGAP is a regulator of Ras GTPase family members. As a full-length protein, RasGAP does not modulate apoptosis. However, low caspase activity readily induces the cleavage of RasGAP into an N-terminal fragment that generates potent anti-apoptotic signals. At higher caspase activity, the N-terminal fragment is further cleaved into two fragments that strongly potentiate apoptosis. RasGAP can, thus, be viewed as an apoptostat because it allows the cells to determine when caspases have been mildly activated to fulfill functions other than apoptosis or when caspases are strongly activated to mediate apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号