首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organization of the Caulobacter crescentus flagellar filament   总被引:10,自引:0,他引:10  
The structural organization of the flagellar filament of Caulobacter crescentus, as revealed by immunoelectron microscopy, shows five antigenically distinct regions within the hook-filament complex. The first region is the hook. The second region is adjacent to the hook and is approximately 10 nm in length. On the basis of its location in the hook-filament complex, this region may contain hook-associated proteins. Next to this is the third region, which is approximately 60 nm in length. Antibody decoration experiments using mutant strains with deletions of the structural gene for the 29 x 10(3) Mr flagellin (flgJ) showed that the presence of this region is correlated with the expression of the 29 x 10(3) Mr flagellin gene. The next region (region IV), of length approximately 1 to 2 microns, appears to contain the 27.5 x 10(3) Mr flagellin, but at its distal end includes, in gradually increasing amounts, the 25 x 10(3) Mr flagellin. The rest of the filament (region V) is made up predominantly, if not completely, of the 25 x 10(3) Mr flagellin. Except for the hook, there are no morphological features that would otherwise distinguish these regions. A functional flagellum, having the wild-type length and morphology, is assembled by mutant strains deficient in the 29 x 10(3) Mr flagellin and 27.5 x 10(3) Mr flagellin.  相似文献   

2.
The eubacterial flagellum is a complex structure with an elongated extracellular filament that is composed primarily of many subunits of a flagellin protein. The highly conserved N and C termini of flagellin are important in its export and self-assembly, whereas the middle sequence region varies greatly in size and composition in different species and is known to be deletion-tolerant. In Salmonella typhimurium phase 1 flagellin, this "hypervariable" region encodes two solvent-exposed domains, D2 and D3, that form a knob-like feature on flagella fibers. The functional role of this structural feature in motility remains unclear. We investigated the structural and physiological role of the hypervariable region in flagella assembly, stability and cellular motility. A library of random internal deletion variants of S. typhimurium flagellin was constructed and screened for functional variants using a swarming agar motility assay. The relative cellular motility and propulsive force of ten representative variants were determined in semi-solid and liquid medium using colony swarming motility assays, video microscopy and optical trapping of single cells. All ten variants exhibited diminished motility, with varying extents of motility observed for internal deletions less than 75 residues and nearly complete loss of motility for deletions greater than 100 residues. The mechanical stability of the variant flagella fibers also decreased with increasing size of deletion. Comparison of the variant sequences with the wild-type sequence and structure indicated that all deletions involved loss of hydrophobic core residues, and removal of both partial and complete segments of secondary structure in the D2 and D3 domains. Homology modeling predicted disruptions of secondary structures in each variant. The hypervariable region D2 and D3 domains appear to stabilize the folded conformation of the flagellin protein and contribute to the mechanical stability and propulsive force of the flagella fibers.  相似文献   

3.
Cultures of wild-type Caulobacter crescentus and strains with fla mutations representing 24 genes were pulse-labeled with 14C-amino acids and analyzed by immunoprecipitation to study the synthesis of flagellar components. Most fla mutants synthesize flagellin proteins at a reduced rate, suggesting the existence of some mechanism to prevent the accumulation of unpolymerized flagellin subunits. Two strains contain deletions that appear to remove a region necessary for this regulation. The hook protein does not seem to be subject to this type of regulation and, in addition, appears to be synthesized as a faster-sedimenting precursor. Mutations in a number of genes result in the appearance of degradation products of either the flagellin or the hook proteins. Mutations in flaA, -X, -Y, or -Z result in the production of filaments (stubs) that contain altered ratios of the flagellin proteins. In some flaA mutants, other flagellin-related proteins were assembled into the stub structures in addition to the flagellins normally present. Taken together, these analyses have begun to provide insight into the roles of individual fla genes in flagellum biogenesis in C. crescentus.  相似文献   

4.
Members of the genus Actinoplanes are considered to be representative of motile actinomycetes. To infer the flagellar diversity of Actinoplanes species, novel degenerate primers were designed for the flagellin (fliC) gene. The fliC gene of 21 Actinoplanes strains was successfully amplified and classified into two groups based on whether they were large (type I) or small (type II). Comparison of the translated amino acid sequences revealed that this size difference could be attributed to large number of gaps located in the central variable region. However, the C- and N- terminal regions were conserved. Except for a region on the flagellum surface, structural predictions of type I and II flagellins revealed that the two flagellin types were strongly correlated with each other. Phylogenetic analysis of the 115-amino acid N-terminal sequences revealed that the Actinoplanes species formed three clusters, and type II flagellin gene containing three type strains were phylogenetically closely related each other.  相似文献   

5.
Vibrio parahaemolyticus possesses two alternate flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (swimming), while multiple lateral flagella move the bacterium over surfaces (swarming). Energy to rotate the polar flagellum is derived from the sodium membrane potential, whereas lateral flagella are powered by the proton motive force. Lateral flagella are arranged peritrichously, and the unsheathed filaments are polymerized from a single flagellin. The polar flagellum is synthesized constitutively, but lateral flagella are produced only under conditions in which the polar flagellum is not functional, e.g., on surfaces. This work initiates characterization of the sheathed, polar flagellum. Four genes encoding flagellins were cloned and found to map in two loci. These genes, as well as three genes encoding proteins resembling HAPs (hook-associated proteins), were sequenced. A potential consensus polar flagellar promoter was identified by using upstream sequences from seven polar genes. It resembled the enterobacterial sigma 28 consensus promoter. Three of the four flagellin genes were expressed in Escherichia coli, and expression was dependent on the product of the fliA gene encoding sigma 28. The fourth flagellin gene may be different regulated. It was not expressed in E. coli, and inspection of upstream sequence revealed a potential sigma 54 consensus promoter. Mutants with single and multiple defects in flagellin genes were constructed in order to determine assembly rules for filament polymerization. HAP mutants displayed new phenotypes, which were different from those of Salmonella typhimurium and most probably were the result of the filament being sheathed.  相似文献   

6.
Methanococcus voltae possesses four flagellin genes, two of which (flaB1 and flaB2) have previously been reported to encode major components of the flagellar filament. The remaining two flagellin genes, flaA and flaB3, are transcribed at lower levels, and the corresponding proteins remained undetected prior to this work. Electron microscopy examination of flagella isolated by detergent extraction of whole cells revealed a curved, hook-like region of varying length at the end of a long filament. Enrichment of the curved region of the flagella resulted in the identification of FlaB3 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and N-terminal sequencing, and the localization of this flagellin to the cell-proximal portion of the flagellum was confirmed through immunoblotting and immunoelectron microscopy with FlaB3-specific antibodies, indicating that FlaB3 likely composes the curved portion of the flagella. This could represent a unique case of a flagellin performing the role of the bacterial hook protein. FlaA-specific antibodies were used in immunoblotting to determine that FlaA is found throughout the flagellar filament. M. voltae cells were transformed with a modified flaA gene containing a hemagglutinin (HA) tag introduced into the variable region. Transformants that had replaced the wild-type copy of the flaA gene with the HA-tagged version incorporated the HA-tagged version of FlaA into flagella which appeared normal by electron microscopy.  相似文献   

7.
8.
9.
Flagella are essential for motility and have been implicated to be one of the pathogenic determinants. The flagellum ofCampylobacter jejuni is a polymeric structure of a 62-kd protein. Using a high-affinity flagellin antibody to screen a lambda gt 11 phage genomic expression library ofC. jejuni strain TGH9011 (Serotype LIO36), a recombinant phage clone lambda gt 11RK that expresses theC. jejuni flagellin protein was isolated. The recombinant lambda gt 11 RK produced a 56-kd protein upon induction with isopropylthiogalactoside, which reacted specifically with anti-flagellin antibody. The flagellin gene was sequenced, and comparative analysis of the nucleotide and amino acid sequence identified a region of the flagellin that shows hypervariability among differentCampylobacter species and strains.  相似文献   

10.
11.
Glycosylation is a posttranslational modification utilized in all three domains of life. Compared to eukaryotic and bacterial systems, knowledge of the archaeal processes involved in glycosylation is limited. Recently, Methanococcus voltae flagellin proteins were found to have an N-linked trisaccharide necessary for proper flagellum assembly. Current analysis by mass spectrometry of Methanococcus maripaludis flagellin proteins also indicated the attachment of an N-glycan containing acetylated sugars. To identify genes involved in sugar biosynthesis in M. maripaludis, a putative acetyltransferase was targeted for in-frame deletion. Deletion of this gene (MMP0350) resulted in a flagellin molecular mass shift to a size comparable to that expected for underglycosylated or completely nonglycoslyated flagellins, as determined by immunoblotting. Assembled flagellar filaments were not observed by electron microscopy. Interestingly, the deletion also resulted in defective pilus anchoring. Mutant cells with a deletion of MMP0350 had very few, if any, pili attached to the cell surface compared to a nonflagellated but piliated strain. However, pili were obtained from culture supernatants of this strain, indicating that the defect was not in pilus assembly but in stable attachment to the cell surface. Complementation of MMP0350 on a plasmid restored pilus attachment, but it was unable to restore flagellation, likely because the mutant ceased to make detectable flagellin. These findings represent the first report of a biosynthetic gene involved in flagellin glycosylation in archaea. Also, it is the first gene to be associated with pili, linking flagellum and pilus structure and assembly through posttranslational modifications.  相似文献   

12.
13.
The bacterial flagellum is a complex molecular machine that is assembled by more than 30 proteins and is rotated to propel cells either through liquids or over solid surfaces. Flagellar gene expression is extensively regulated to co-ordinate flagellar assembly in both space and time. In Bacillus subtilis, the proteins of unknown function, SwrA and SwrB, and the alternative sigma factor σ(D) are required to activate expression of the flagellar filament protein, flagellin. Here we determine that in the absence of SwrA and SwrB, the phosphorylated form of the response regulator DegU inhibits σ(D) -dependent gene expression indirectly by binding to the P(flgM) promoter region and activating expression of the anti-sigma factor FlgM. We further demonstrate that DegU-P-dependent activation of FlgM is essential to inhibit flagellin expression when flagellar basal body assembly is disrupted. Regulation of FlgM is poorly understood outside of Salmonella, and differential control of FlgM expression may be a common means of coupling flagellin expression to flagellar assembly.  相似文献   

14.
Flagellin contains conserved N/C domains for TLR5 binding to activate innate immunity and a middle hypervariable domain harboring the major antigenic epitopes. However, conflict results existed in the previous studies as to whether the hypervariable domain was involved in the cytokine production and adjuvancy of flagellin. Here we constructed three flagellin variants (designated as FliCΔ190-278, FliCΔ220-320, and FliCΔ180-400) with deletions in the hypervariable domain. Our data demonstrated that all deletion variants lost substantial antigenicity but not mucosal adjuvancy. Surprisingly, the variant with deletion of amino acids 220-320 (FliCΔ220-320) induced higher production of IL-8, MCP-1, and TNF-α, and showed higher mucosal adjuvancy than full-length FliC flagellin. Our data supported the notion that the hypervariable domain was involved in the cytokine production by flagellin and more importantly demonstrated that the hypervariable domain was important for the mucosal adjuvancy of flagellin.  相似文献   

15.
Construction of a minimum-size functional flagellin of Escherichia coli.   总被引:23,自引:10,他引:13       下载免费PDF全文
Various deletions were introduced into the central region of Escherichia coli flagellin (497 residues) without destroying its ability to form flagellar filaments. The smallest flagellin retained only the N-terminal 193 residues and the C-terminal 117 residues, which are suggested to be the domains essential for filament formation.  相似文献   

16.
17.
18.
19.
Previously, the flagellar filament of Vibrio anguillarum was suggested to consist of flagellin A and three additional flagellin proteins, FlaB, -C, and -D. This study identifies the genes encoding FlaB, -C, and -D and a possible fifth flagellin gene that may encode FlaE. The flagellin genes map at two separate DNA loci and are most similar to the four polar flagellin genes of Vibrio parahaemolyticus, also located at two DNA loci. The genetic organization of these two loci is conserved between both organisms. For each gene, in-frame deletions of the entire gene, the 5' end, and the 3' end were made. Mutant analysis showed that each mutation, except those in flaE, caused a loss of flagellin from the filament. However, no obvious structural loss in the filament, as determined by electron microscopy, and only slight decreases in motility were seen. Virulence analysis indicated that all but two of the mutations gave a wild-type phenotype. The 5'-end deletions of flaD and flaE decreased virulence significantly (>10(4)-fold) of infections via both the intraperitoneal and immersion routes. These results indicate that, like FlaA, FlaD and FlaE may also be involved in virulence.  相似文献   

20.
TP0658 (FliW) and its orthologs, conserved proteins of unknown function in Treponema pallidum and other species, interact with a C-terminal region of flagellin (FlaB1-3 in T. pallidum; FliC in most other species). Mutants of orthologs in Bacillus subtilis and Campylobacter jejuni (yviF, CJ1075) showed strongly reduced motility. TP0658 stabilizes flagellin in a way similar to FliS, suggesting that TP0658 is a conserved assembly factor for the bacterial flagellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号