首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tribe Arctotideae (African Daisies), of the flowering plant family Compositae (Asteraceae), is a diverse and interesting group with a primarily southern African distribution (ca. 13 genera, 215 species) and many species in the Cape Floristic Region. It is divided into two subtribes: Arctotidinae (ca. 5 genera, 85 species) and Gorteriinae (ca. 8 genera, 130 species). The monophyly of the genera within the subtribe Gorteriinae and their relationship to one another was investigated using 71 samples/212 sequences including 64/141 of which are newly reported from three phylogenetic markers, two from chloroplast DNA (trnL-F and ndhF) and one from the nuclear genome (ITS). The outgroup was composed of seven members from the sister subtribe. Results show the subtribe Gorteriinae to be divided into three monophyletic groups, the Gazania-Hirpicium-Gorteria group, the Didelta group, and the Berkheya-Cullumia group. Within these three groups are 13 sub-groups, one of which has sub-clades. The genus Berkheya Ehrh. is paraphyletic, falling into five different sub-groups. The two monotypic genera, Cuspidia and Heterorhachis are not nested within any of the Berkheya clades. Hirpicium and Cullumia each have most of their taxa in a monophyletic group, but they also have one or two taxa associated with other clades. Four of the five sub-groups of Berkheya have morphologically recognizable shared characters, such as habit and spines that have been recognized by past studies. However, the grouping of one species with Didelta is difficult to explain. Support for the major clades and most of the sub-groups is strong but the relationships among some of the terminal taxa are variable.  相似文献   

2.
A phylogeny of basils and allies (Lamiaceae, tribe Ocimeae) based on sequences of the trnL intron, trnL-trnF intergene spacer and rps 16 intron of the plastid genome is presented. Several methods were used to reconstruct phylogenies and to assess statistical support for clades: maximum parsimony with equally and successively weighted characters, bootstrap resampling, and Bayesian inference. The phylogeny is used to investigate the distribution of morphological, pericarp anatomy, chemical, and pollen characters as well as the geographical distribution of the clades. Tribe Ocimeae is monophyletic and easily diagnosable with morphological synapomorphies. There are monophyletic clades within Ocimeae that broadly correspond to currently recognised subtribes: Lavandulinae, Hyptidinae, Ociminae, and Plectranthinae. Only Lavandulinae has clear non-molecular synapomorphies. Several currently recognised genera are not monophyletic. Floral morphology consistent with sternotribic pollination is most common in Ocimeae, but there are independent departures from this model. Buzz pollination is likely in some species, the only postulated occurrence of this within Lamiaceae. Quinone diterpenoids and flavones in the leaf exudates differ in their distributions across the phylogeny and this could contribute to differences in the recorded medicinal as well as pesticidal uses of the species in the different clades. Mapping geographic distribution on to an ultrametric phylogenetic tree produced using non-parametric rate smoothing supports an Asiatic origin for Ocimeae. There are several secondary occurrences in Asia arising from the African Ociminae and Plectranthinae clades. Colonisation of Madagascar occurred at least five times, and New World colonisation occurred at least three times.  相似文献   

3.
Pollen grains of tribe Sanguisorbeae (Rosaceae, Rosoideae) were examined using scanning electron microscopy to identify useful characters, test taxonomic and phylogenetic hypotheses among genera, and elucidate pollen character evolution based on a molecular phylogeny. Aperture number, aperture structure, pollen shape, and exine sculpturing were variable within Sanguisorbeae and were used to delineate six pollen types. Four types (I–IV) were observed only in subtribe Sanguisorbinae whereas two types (V–VI) were found only in subtribe Agrimoniinae. Pollen grains of tribe Sanguisorbeae were generally subprolate to spheroidal in shape, had operculate or pontoperculate apertures, and had three apertures, except for Margyricarpus (tetraperturate). Exine sculpturing within Sanguisorbinae represented variations of striate, verrucate, rugulate, and perforate patterns often with microechinate sculpturing. Striate exine patterns and prolate shapes characterized the pollen of the Agrimoniinae, except for the microechinate-verrucate pattern and subprolate to spheroidal shapes observed in Hagenia. Pollen characters are most useful at the generic level and, when mapped on to a molecular phylogenetic tree of the tribe, are concordant with a monophyletic Agrimoniinae and a clade comprising Margyricarpus + Acaena + Polylepis + Cliffortia + Sanguisorba in the Sanguisorbinae. Outgroup comparison indicated that operculate colpi, three apertures, and polymorphism for striate or microverrucate exines represented primitive states for tribe Sanguisorbeae.  相似文献   

4.
The Menispermaceae family contains ca. 72 genera with 450 species that are almost entirely tropical. Its phylogeny at the tribal level has never been examined using molecular data. Here we used DNA sequences of the chloroplast matK gene and trnL-F regions, and the nuclear ITS region to study the delimitation and position of the tribe Menispermeae within the family and its subtribal monophyletic groups. Family-wide phylogenetic analyses of the chloroplast data produced two strongly supported clades. The first clade contains two subclades: Coscinieae including Arcangelisia and Anamirta, and Tinosporeae sensu lato including Fibraureae, supported by morphological characters, such as traits of the cotyledon, stylar scar and embryo. The second clade consists of the tribes Menispermeae sensu DC. and Tiliacoreae Miers. All our analyses surprisingly recognized that tribe Menispermeae is not monophyletic unless tribe Tiliacoreae is included, suggesting that characters of cotyledon and stylar scar are very important for the infrafamilial classification, and that endosperm presence vs. absence was over-emphasized in traditionally tribal division of the family. Our topologies indicate a secondary loss of endosperm. The monophyly of two subtribes of the tribe Menispermeae, Stephaniinae and Cissampelinae, is supported by the cpDNA and ITS data, as well as by morphological characters, including aperture types and shapes, and colpal membrane features of pollen grains, and sepal number of male flowers. The Cocculinae was recognized as a paraphyletic group containing the remaining genera of the tribe Menispermeae.  相似文献   

5.
The pollen morphology of 120 samples of the tribe Orobancheae, representing four genera and 40 species of Cistanche, Diphelypaea, Orobanche and Phelipanche native to Turkey, has been studied by light and scanning electron microscopy. Pollen of the tribe Orobancheae is typically isopolar, radially asymmetrical, oblate spheroidal or prolate and belongs to one of the following basic pollen types: inaperturate, tricolpate and syncolpate. Also, pollen heteromorphism is widespread among pest species of Orobanche and Phelipanche. Pollen characters display considerable variation among genera and species, but some characters are significant at the levels of genera and sections. The results of the SEM study show that there are various exine ornamentation types in these genera. The obtained results support the division of the traditionally circumscribed genus Orobanche sensu lato into two genera, Phelipanche and Orobanche. The pollen morphological features are discussed on the basis of molecular phylogeny of the taxa.  相似文献   

6.
The Burseraceae are a medium‐sized family in which 18 genera are currently recognised. They are the subject of a long‐term project to describe the pollen morphology from light, scanning electron and transmission electron microscopy. The pollen morphology of tribe Protieae has been published, as well as an account of the pollen of the African taxa in the family. Pollen data for the other two tribes, Bursereae and Canarieae, are more or less complete. The pollen of all the genera have been examined, with the exception of the recently described Pseudodacryodes Pierlot for which, currently, there is no pollen material available. This paper summarises the results.

There is considerable variation in exine and aperture features between, and occasionally within, the genera and 14 major pollen types are defined, including two previously undescribed types: ‘Canarium oleiferum’ and ‘Canarium gracile’. The distribution of pollen characteristics throughout the family is compared with previously published tribal and subtribal groupings, as well as with current ideas of generic relationships from molecular analyses. Comparisons show notable congruence of pollen data with molecular data. To some extent pollen morphology is different for each of the subtribes. Nevertheless, there are some notable exceptions, for example, the pollen of Garuga and Boswellia are remarkably similar, although Garuga has been included, somewhat tenuously, in tribe Protieae, and Boswellia is included in tribe Bursereae, subtribe Boswelliinae. In a recent molecular tree Garuga and Boswellia appear to be closely related, and this supports the conclusion, based on several macromorphological characters as well as pollen, that Garuga should be transferred to tribe Bursereae.  相似文献   

7.
We provide the first multilocus molecular phylogeny of a group corresponding to the former subfamily Staphylininae. Results are corroborated by the morphological, biogeographical and palaeobiological evidence to serve as a baseline for an updated suprageneric classification. The former subfamily Staphylininae is proven to be a lineage sister to the monophyletic Paederinae and reclassified according to a robust phylogeny resolving a number of long-standing controversies. The subfamily Xantholininae (revised status) is reinstated to contain the tribes Xantholinini, Othiini, Maorothiini and Diochini. Subfamily Platyprosopinae (revised status) is reinstated for the tribes Platyprosopinini, Arrowinini and †Thayeralinini. For a highly peculiar genus Coomania Cameron, formerly in Diochini, a new subfamily Coomaniinae subfam.n. is established and the composition of Diochini (revised status) is changed accordingly. The subfamily Staphylininae (revised status) is reduced to contain the former tribe Staphylinini only. Elevating this mega-diverse tribe to the subfamily rank opened up an opportunity for its more fractional classification by raising several subtribes to the tribal level as follows: Acylophorini, Afroquediini, Amblyopinini, Antimerini, †Baltognathini, Cyrtoquediini, Erichsoniini, Hyptiomini, Indoquediini, Quediini and Tanygnathinini (revised status for all). As a result, the most species-rich tribe Staphylinini (revised status) is reduced to the more homogeneous lineage containing the subtribes Algonina, Anisolinina, Philonthina, Philothalpina, Staphylinina and Xanthopygina. Morphological synapomorphies and diagnostic characters supporting all newly defined higher taxa are provided. This published work has been registered on ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:DED8B042-83C9-4D10-B0CB-B50372B067A9 .  相似文献   

8.
Sylvia Feuer 《Grana》2013,52(4):225-242
This is the first of two papers detailing pollen morphology and evolution with the tribe Embothrieae comprising eight genera and ca. 56 spp. The present paper examines pollen of subtribes Buckinghaminae (Buckinghamia; 2 spp., Opislhiolepis; 1 sp.), Stenocarpinae (Strangea; 3 spp.), Stenocarpus (ca. 27 spp.) and Lomatiinae (Lomatia; ca. 12 spp.) in the light microscope and scanning and transmission electron microscopes. Pollen is medium-sized, oblate, foveolate to microreticulate to reticulate, and predominantly columellate with a complex modified postvestibulate aperture morphology. Pollen data indicate ties between Lomatia and Stenocarpus on the one hand and Stenocarpus and Strangea on the other. Though Buckinghamia and Opislhiolepis have been placed in the same subtribe, the unique combination of pollen features in each suggests only a remote relationship to each other as well as to remaining Embothrieae. Comparisons to the remaining genera of Embothriae (Embothrium, Oreocallis, Telopea) and overall analysis of pollen evolution within the tribe are detailed in the subsequent paper.  相似文献   

9.
A comprehensive higher‐level phylogeny of diving beetles (Dytiscidae) based on larval characters is presented. Larval morphology and chaetotaxy of a broad range of genera and species was studied, covering all currently recognized subfamilies and tribes except for the small and geographically restricted Hydrodytinae, where the larva is unknown. The results suggest several significant conclusions with respect to the systematics of Dytiscidae including the following: monophyly of all currently recognized subfamilies, although Dytiscinae when considered in a broad context is rendered paraphyletic by Cybistrinae; currently recognized tribes are monophyletic except for Agabini, Hydroporini and Laccornellini; inter‐subfamily and inter‐tribe relationships generally show weak support, except for a few well supported clades; three distinct clades are recognized within Dytiscinae [Dytiscini sensu lato (i.e. including the genera Dytiscus Linnaeus and Hyderodes Hope), Hydaticini sensu lato, and Cybistrini]; and recognition of Pachydrini as a distinct tribe. Other less robust results include: Methlini sister to the rest of Hydroporinae; relative basal position of Laccornini, Hydrovatini and Laccornellini within Hydroporinae; close relationship of Agabinae and Copelatinae; Matinae nested deep within Dytiscidae, as sister to a large clade including Colymbetinae, Coptotominae, Lancetinae and Dytiscinae sensu lato; the sister‐group relationship of Agabetini and Laccophilini is confirmed. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets, and the evolution of some significant morphological features is discussed in light of the proposed phylogeny. All suprageneric taxa are diagnosed, including illustrations of all relevant synapomorphies, and a key to separate subfamilies and tribes is presented, both in traditional (paper) format and as an online Lucid interactive identification key.  相似文献   

10.
Recent molecular studies in Asteraceae have divided tribe Mutisieae (sensu Cabrera) into 13 tribes and eight subfamilies. Each of the major clades is well supported but the relationships among them are not always clear. Some of the new taxa are easily characterized by morphological data but others are not, chief among the latter being three subfamilies (Stifftioideae, Wunderlichioideae and Gochnatioideae) and the tribe Hyalideae. To understand evolution in the family it is critical to investigate potential morphological characters that can help to evaluate the basal lineages of the Asteraceae. The data for this study were taken from 52 species in 24 genera representing the basal groups in the family. Many characters were examined but most of the useful ones were from reproductive structures. Several apomorphies supported a few of the clades. For instance, members of subfamily Wunderlichioideae (Hyalideae and Wunderlichieae) share predominantly ten‐ribbed achenes and members of Wunderlichioideae + Stifftioideae share two synapomorphies: 100–150 (200) pappus elements, arranged in (three) four or five series. These apomorphies can be viewed as an indication of a sister‐group relationship between the two subfamilies as the placement of Stifftieae was not well resolved by the molecular data. Members of Wunderlichieae are characterized by having a paleaceous receptacle, style branches that are strongly papillose above and below the bifurcation, and a pappus of scales. Hyalis and Ianthopappus (Hyalideae) share venation type and an apiculate anther appendage but these are also found in Gochnatieae. Other clades have fewer supporting characters. These characters are just a beginning. Cladograms with morphology characters plotted, illustrations and a key to the basal grade of Asteraceae are provided. © 2013 The Linnean Society of London  相似文献   

11.
Members of tribe Vandeae (Orchidaceae) form a large, pantropical clade of horticulturally important epiphytes. Monopodial leafless members of Vandeae have undergone extreme reduction in habit and represent a novel adaptation to the canopy environment in tropical Africa, Asia, and America. To study the evolution of monopodial leaflessness, molecular and structural evidence was used to generate phylogenetic hypotheses for Vandeae. Molecular analyses used sequence data from ITS nrDNA, trnL-F plastid DNA, and matK plastid DNA. Maximum parsimony analyses of these three DNA regions each supported two subtribes within monopodial Vandeae: Aeridinae and a combined Angraecinae + Aerangidinae. Adding structural characters to sequence data resulted in trees with more homoplasy, but gave fewer trees each with more well-supported clades than either data set alone. Two techniques for examining character evolution were compared: (1) mapping vegetative characters onto a molecular topology and (2) tracing vegetative characters onto a combined structural and molecular topology. In both cases, structural synapomorphies supporting monopodial Vandeae were nearly identical. A change in leaf morphology (usually reduced to a nonphotosynthetic scale), monopodial growth habit, and aeration complexes for gas exchange in photosynthetic roots seem to be the most important characters in making the evolutionary transition to leaflessness.  相似文献   

12.
须芒草族植物花粉形态的观察   总被引:2,自引:1,他引:1  
在光学显微镜下和扫描电镜下对禾本科须芒草族(Andropogoneae)中分隶于8个亚族34个属的36种植物的花粉进行形态面容和比较研究。结果显示,本族植物花粉形态较为一致,花粉近形或扁球形,单萌发孔,孔,周围加厚,具盖,外壁表面散布有颗粒。这表明其是一个自然类群。总体来讲,芬烨大的演化分异,只是表面纹饰的和芬烨大小有一;定的差异。纹饰可分为三种类型粗糙型,不明显疠状突起才明显疠状突起型。花粉开矿  相似文献   

13.
The phylogenetic relationships of the tribe Rhingiini and the genus Cheilosia (Diptera, Syrphidae) were investigated using morphological and molecular characters. The genus Cheilosia is one of the most diverse lineages of hoverflies (Syrphidae). The mitochondrial protein coding gene cytochrome c oxidase subunit I (COI), and the D2‐3 region of the nuclear 28S rRNA gene were chosen for sequencing, and morphological characters were scored for both adults and immature stages. The combined dataset included 56 ingroup taxa. The datasets were analyzed separately and in conjunction, using both static and dynamic alignment under the parsimony criterion. The aim of the study was to assess the phylogenetic relationships of the tribe Rhingiini, and to explore if the subgenera of Cheilosia were supported as monophyletic clades. Results showed that the monophyly of subtribes of Rhingiini remained ambiguous, especially due to unstable phylogenetic placements of the genera Portevinia and Rhingia. We recovered most subgenera of Cheilosia as monophyletic clades. Dynamic alignment, using the optimization alignment program POY, always recovered more parsimonious topologies under all parameter weighting schemes, than did parsimony analyses using static alignment and analyzed with NONA.  相似文献   

14.

Background and Aims

The Neotropical tribe Trimezieae are taxonomically difficult. They are generally characterized by the absence of the features used to delimit their sister group Tigridieae. Delimiting the four genera that make up Trimezieae is also problematic. Previous family-level phylogenetic analyses have not examined the monophyly of the tribe or relationships within it. Reconstructing the phylogeny of Trimezieae will allow us to evaluate the status of the tribe and genera and to examine the suitability of characters traditionally used in their taxonomy.

Methods

Maximum parsimony and Bayesian phylogenetic analyses are presented for 37 species representing all four genera of Trimezieae. Analyses were based on nrITS sequences and a combined plastid dataset. Ancestral character state reconstructions were used to investigate the evolution of ten morphological characters previously considered taxonomically useful.

Key Results

Analyses of nrITS and plastid datasets strongly support the monophyly of Trimezieae and recover four principal clades with varying levels of support; these clades do not correspond to the currently recognized genera. Relationships within the four clades are not consistently resolved, although the conflicting resolutions are not strongly supported in individual analyses. Ancestral character state reconstructions suggest considerable homoplasy, especially in the floral characters used to delimit Pseudotrimezia.

Conclusions

The results strongly support recognition of Trimezieae as a tribe but suggest that both generic- and species-level taxonomy need revision. Further molecular analyses, with increased sampling of taxa and markers, are needed to support any revision. Such analyses will help determine the causes of discordance between the plastid and nuclear data and provide a framework for identifying potential morphological synapomorphies for infra-tribal groups. The results also suggest Trimezieae provide a promising model for evolutionary research.  相似文献   

15.
Pollen ultrastructure has been investigated in 35 taxa of Gnaphalieae (Compositae), predominantly from New Zealand. Pollen grains of all taxa examined are tectate‐columellate and caveate. The characters regarded as particularly distinctive include variability of columellar form and internal organisation of the columellae. The importance of pollen characters in the classification of the New Zealand Gnaphalieae is discussed. The species of Haastia, characterised by senecioid pollen and internal tecta, do not belong to the Gnaphalieae. In the species with helianthoid pollen and sub‐columellae five different columellae types can be distinguished.  相似文献   

16.
Pollen grains of the tribe Pavetteae (Rubiaceae, subfamily Ixoroideae) are examined using LM and SEM. Grains are 3‐ or 4‐colporate and (semi‐) tectate (in one Versteegia species atectate). Sexine patterns vary between perforate, microreticulate, reticulate, rugulate and striato‐reticulate. Supratectal elements are sometimes present. The variation in pollen morphology in the Pavetteae allows to recognize seven pollen types, the distribution of which is useful to evaluate generic delimitations and relationships within the tribe. Pollen characters corroborate the close relationships between the genera Coleactina, Dictyandra and Leptactina and between Homollea, Homolliella and Paracephaelis. All the genera of the tribe proved to be stenopalynous (the species examined possess the same pollen type), except Pavetta, Rutidea, Versteegia and Tarenna which are eurypalynous. In the huge genus Pavetta the existing infrageneric classification is supported pollen morphologically. Pollen morphology further indicates that the genus Tarenna is badly delimited and strongly in need of a revision. The small genus Versteegia is in need of further taxonomic and palynological study to understand the pollen morphological variation encountered here. At a higher rank, pollen morphology also does not contradict the recent division of the Pavetteae in the Ixoreae (a stenopalynous tribe with presumably primitive pollen) and the Pavetteae sensu stricto (eurypalynous).  相似文献   

17.
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

18.
Urticaceae is a family with more than 2000 species, which contains remarkable morphological diversity. It has undergone many taxonomic reorganizations, and is currently the subject of further systematic studies. To gain more resolution in systematic studies and to better understand the general patterns of character evolution in Urticaceae, based on our previous phylogeny including 169 accessions comprising 122 species across 47 Urticaceae genera, we examined 19 diagnostic characters, and analysed these employing both maximum-parsimony and maximum-likelihood approaches. Our results revealed that 16 characters exhibited multiple state changes within the family, with ten exhibiting >eight changes and three exhibiting between 28 and 40. Morphological synapomorphies were identified for many clades, but the diagnostic value of these was often limited due to reversals within the clade and/or homoplasies elsewhere. Recognition of the four clades comprising the family at subfamily level can be supported by a small number carefully chosen defining traits for each. Several non-monophyletic genera appear to be defined only by characters that are plesiomorphic within their clades, and more detailed work would be valuable to find defining traits for monophyletic clades within these. Some character evolution may be attributed to adaptive evolution in Urticaceae due to shifts in habitat or vegetation type. This study demonstrated the value of using phylogeny to trace character evolution, and determine the relative importance of morphological traits for classification.  相似文献   

19.
The phylogeny of subtribe Gorteriinae (Asteraceae‐Arctotideae) is investigated by means of cladistic analysis of morphological characters. Two sister groups are formed, namely a Gorteria clade also containing Hirpicium and Gazania, and a Berkheya clade, which also contains Cullumia, Cuspidia, Didelta and Heterorhachis. The Gorteria clade has strong jackknife support and is diagnosed by four morphological characters (leaves with longitudinally striate hairs, fringed anther apical appendages, pollen of the “Gazania‐type”, and subulate‐ensiform, ascending style sweeping hairs) that are unique within the Asteraceae. The Berkheya clade is moderately supported and diagnosed by two characters without contradiction (spiny leaves, and mamillate, large style sweeping hairs). Hirpicium and Berkheya are paraphyletic, with the other, morphologically more homogeneous genera (Gorteria, and Gazania, Cullumia, Cuspidia, Didelta and Heterorhachis, respectively) nested within them. There is some evidence for a radiation of species of the summer rainfall area of South Africa and tropical Africa and the corresponding species are nested within a grade confined to the Cape Floristic Region. © The Willi Hennig Society 2006.  相似文献   

20.
The use of internal skeletal structures is valuable to phylogenetic reconstruction within Hymenoptera; however, these structures were not further investigated for Augochlorini. Previous phylogenetic studies of Augochlorini based only on external morphology were poorly resolved. The objectives of this work are to explore the comparative morphology of internal structures of the mesosoma and to evaluate their potential as information sources for the phylogenetic relationships within the tribe. The internal structures of the Pseudaugochlora graminea (Fabricius, 1804) mesosoma are described in detail and compared with 16 other genera. We propose 24 new character statements for the Augochlorini phylogeny based on internal structures of mesosoma. Prosternum, propleuron and meso/metafurca provided a great number of informative characters. On the other hand, the mesophragma, metanotum and propodeum were less variable. The monophyly of Augochlorini and of all genus groups was corroborated in a parsimony analysis of internal and external morphological characters. Characters derived from internal structures provided the first‐known morphological synapomorphies for the clades: Megaloptidia group + others, Neocorynura group + others and Augochlora group + Megalopta group. These characters helped to elucidate the evolution of the group when analysed together with external morphological characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号