共查询到20条相似文献,搜索用时 10 毫秒
1.
Anibal E. Vercesi Alicia J. Kowaltowski Mercedes T. Grijalba André R. Meinicke Roger F. Castilho 《Bioscience reports》1997,17(1):43-52
We have provided evidence that mitochondrial membrane permeability transition induced by inorganic phosphate, uncouplers or prooxidants such as t-butyl hydroperoxide and diamide is caused by a Ca2+-stimulated production of reactive oxygen species (ROS) by the respiratory chain, at the level of the coenzyme Q. The ROS attack to membrane protein thiols produces cross-linkage reactions, that may open membrane pores upon Ca2+ binding. Studies with submitochondrial particles have demonstrated that the binding of Ca2+ to these particles (possibly to cardiolipin) induces lipid lateral phase separation detected by electron paramagnetic resonance experiments exploying stearic acids spin labels. This condition leads to a disorganization of respiratory chain components, favoring ROS production and consequent protein and lipid oxidation. 相似文献
2.
The channels of the mitochondrial outer membrane represent a useful model for studies into the mechanisms underlying phenomena of voltage-dependent gating and ion selectivity. 相似文献
3.
Summary The cyclic nucleotide effect on junction was studied in C1-1D cells, a mouse cancer cell type that fails to make permeable junctions in ordinary confluent culture. Upon administration of cyclic AMP, dibutyryl cyclic AMP, dibutyryl cyclic AMP plus caffeine (db-cAMP-caffeine), or cholera toxin (an adenylate cyclase activator), the cells acquired permeable junctions; they became electrically coupled and transferred fluorescent tracer molecules among each other—a transfer exhibiting the molecular size limit of permeation of normal cell-to-cell channels. The effect took several hours to develop. With the db-cAMP-caffeine treatment, junctional permeability emerged within two hours in one-fifth of the cell opopulation, and within the next few hours in the entire population. This development was not prevented by the cytokinesis inhibitor cytochalasin B. Permeable junctions formed also in two other conditions where the cell-endogenous cyclic AMP level may be expected to increase: serum starvation and low cell density. After three weeks of starving the cells of serum, a junctional permeability arose in confluent cultures, which on feeding with serum disappeared within two to three days. At low cell density, namely below confluency, the cells made permeable junctions, unstarved. In cultures of rather uniform density, the frequency of permeable junctions was inversely related to the average density, over the subconfluent range; at densities of about 1×104 cells/cm2, where the cells had few mutual contacts, 80% of the pairs presumed to be in contact were electrically coupled. In cultures with adjoining territories of high (confluent) and low cell density, there was coupling only in the last, and in this low-density state the cells were also capable of coupling with other mammalian cell types (mouse 3T3-BalbC and human Lesch-Nyhan cells).Correlated electron microscopy of freeze-fractured cell junctions showed no membrane differentiation in confluent C1-1D cultures. The junctions acquired differentiations, namely particle clusters of gap junction and strands of tight junction, upon cyclic nucleotide application or serum starvation and in the lowdensity condition. With db-cAMP-caffeine, these differentiations appeared within 4 hr of the treatment (confluent cultures), growing in size over the next hours. Treatment with cycloheximide, but not with cytochalasin B, prevented the development of recognizable gap junction and tight junction in cultures supplied with db-cAMP-caffeine. 相似文献
4.
A Perantoni J M Rice R M Nardone J J Berman T J Curphey 《Chemico-biological interactions》1984,52(1):39-50
The enzyme gamma-glutamyl transpeptidase (GGT) is characteristically present at high levels in mammalian cells that are vulnerable in vivo to the selectively toxic and carcinogenic effects of the naturally occurring diazo amino acid L-azaserine. The possible role of GGT as a determinant of cellular sensitivity to azaserine toxicity was investigated. No correlation was found between GGT activity and the abilities of different cell lines or GGT-deficient cell strains of TuWi, a human nephroblastoma-derived line high in GGT, to accumulate azaserine. However, the thiols glutathione and cysteine were found to inhibit the toxicity of azaserine in cultures of TuWi. In addition, maleate lowered both intracellular and extracellular glutathione levels and enhanced sensitivity of TuWi cells to azaserine, while serine-borate, a potent inhibitor of GGT, increased extracellular glutathione levels and inhibited azaserine toxicity. Since extracellular glutathione accumulation, which may reflect the rate of cellular glutathione turnover, is increased in cultures of azaserine-resistant, GGT-deficient strains of TuWi, we propose that GGT enhances cellular sensitivity to azaserine primarily by increasing the rate of glutathione turnover, thus removing the glutathione from detoxification pathways. 相似文献
5.
Vallon V Huang DY Grahammer F Wyatt AW Osswald H Wulff P Kuhl D Lang F 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,289(2):R395-R401
Mineralocorticoids modify salt balance by both stimulating salt intake and inhibiting salt loss. Renal salt retention is accomplished by upregulation of reabsorption, an effect partially mediated by serum- and glucocorticoid-inducible kinase 1 (SGK1). The present study explored the contribution of SGK1 to the regulation of renal function, salt intake, and blood pressure during mineralocorticoid excess. DOCA/1% NaCl treatment increased blood pressure and creatinine clearance to a similar extent in SGK1-deficient sgk1(-/-) and wild-type sgk1(+/+) mice but led to more pronounced increase of proteinuria in sgk1(+/+) mice (by 474 +/- 89%) than in sgk1(-/-) mice (by 154 +/- 31%). DOCA/1% NaCl treatment led to significant increase of kidney weight (by 24%) and to hypokalemia (from 3.9 +/- 0.1 to 2.7 +/- 0.1 mmol/l) only in sgk1(+/+) mice. The treatment enhanced renal Na(+) excretion significantly more in sgk1(+/+) mice (from 3 +/- 1 to 134 +/- 32 micromol.24 h(-1).g body wt(-1)) than in sgk1(-/-) mice (from 4 +/- 1 to 49 +/- 8 micromol.24 h(-1).g body wt(-1)), pointing to SGK1-dependent stimulation of salt intake. With access to two drinking bottles containing 1% NaCl or water, DOCA treatment did not significantly affect water intake in either genotype but increased 1% NaCl intake in sgk1(+/+) mice (within 9 days from 3.5 +/- 0.9 to 16.5 +/- 2.4 ml/day) consistent with DOCA-induced salt appetite. This response was significantly attenuated in sgk1(-/-) mice (from 2.6 +/- 0.6 to 5.9 +/- 0.9 ml/day). Thus SGK1 contributes to the stimulation of salt intake, kidney growth, proteinuria, and renal K(+) excretion during mineralocorticoid excess. 相似文献
6.
Mitochondrial morphology and dynamics were investigated during the onset of cell death in Arabidopsis thaliana. Cell death was induced by either chemical (reactive oxygen species (ROS)) or physical (heat) shock. Changes in mitochondrial morphology in leaf tissue, or isolated protoplasts, each expressing mitochondrial-targeted green fluorescent protein (GFP), were observed by epifluorescence microscopy, and quantified. Chemical induction of ROS production, or a mild heat shock, caused a rapid and consistent change in mitochondrial morphology (termed the mitochondrial morphology transition) that preceded cell death. Treatment of protoplasts with a cell-permeable superoxide dismutase analogue, TEMPOL, blocked this morphology change. Incubation of protoplasts in micromolar concentrations of the calcium channel-blocker lanthanum chloride, or the permeability transition pore inhibitor cyclosporin A, prevented both the mitochondrial morphology transition and subsequent cell death. It is concluded that the observed mitochondrial morphology transition is an early and specific indicator of cell death and is a necessary component of the cell death process. 相似文献
7.
Mitochondrial dysfunction, resulting from the disruption of calcium homeostasis and the generation of toxic reactive oxygen species, is a central process leading to neuronal injury and death following acute CNS insults. Interventions aimed at preventing disturbances in mitochondrial function have therefore become targets of intense investigation. Mitochondrial uncoupling is a condition in which electron transport is disconnected from the production of ATP. As a consequence, there is a decrease in the mitochondrial membrane potential, which can temporarily decrease calcium influx and attenuate free radical formation. The potential use of pharmacological agents with uncoupling properties may provide a novel therapeutic approach for the treatment of acute neuronal injury. 相似文献
8.
Regulation of cell death in flower petals 总被引:17,自引:1,他引:16
Rubinstein B 《Plant molecular biology》2000,44(3):303-318
The often rapid and synchronous programmed death of petal cells provides a model system to study molecular aspects of organ senescence. The death of petal cells is preceded by a loss of membrane permeability, due in part to increases in reactive oxygen species that are in turn related to up-regulation of oxidative enzymes and to a decrease in activity of certain protective enzymes. The senescence process also consists of a loss of proteins caused by activation of various proteinases, a loss of nucleic acids as nucleases are activated, and enzyme-mediated alterations of carbohydrate polymers. Many of the genes for these senescence-associated enzymes have been cloned. In some flowers, the degradative changes of petal cells are initiated by ethylene; in others, abscisic acid may play a role. External factors such as pollination, drought and temperature stress also affect senescence, perhaps by interacting with hormones normally produced by the flowers. Signal transduction may involve G-proteins, calcium activity changes and the regulation of protein phosphorylation and dephosphorylation. The efficacy of the floral system as well as the research tools now available make it likely that important information will soon be added to our knowledge of the molecular mechanisms involved in petal cell death. 相似文献
9.
Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane 总被引:19,自引:0,他引:19
Paolo Bernardi Kimberly M. Broekemeier Douglas R. Pfeiffer 《Journal of bioenergetics and biomembranes》1994,26(5):509-517
The mitochondrial permeability transition pore allows solutes with a m.w. 1500 to equilibrate across the inner membrane. A closed pore is favored by cyclosporin A acting at a high-affinity site, which may be the matrix space cylophilin isozyme. Early results obtained with cyclosporin A analogs and metabolites support this hypothesis. Inhibition by cyclosporin does not appear to require inhibition of calcineurin activity; however, it may relate to inhibition of cyclophilin peptide bond isomerase activity. The permeability transition pore is strongly regulated by both the membrane potential () and pH components of the mitochondrial protonmotive force. A voltage sensor which is influenced by the disulfide/sulhydryl state of vicinal sulfhydryls is proposed to render pore opening sensitive to . Early results indicate that this sensor is also responsive to membrane surface potential and/or to surface potential gradients. Histidine residues located on the matrix side of the inner membrane render the pore responsive to pH. The pore is also regulated by several ions and metabolites which act at sites that are interactive. There are many analogies between the systems which regulate the permeability transition pore and the NMDA receptor channel. These suggest structural similarities and that the permeability transition pore belongs to the family of ligand gated ion channels. 相似文献
10.
F. Beck 《The Histochemical journal》1981,13(4):667-679
Summary Enbryopathy has been produced by inhibition of histiotrophic nutrition in the rat using a number of agents which prevent this process. The experiments were carried outin vitro at various stages of development before the inception of a chorio allantoic placenta. Dose-dependent effects on the embryo were demonstrated using the acid bisazo dye Trypan Blue, which inhibits endocytosis, and an enzyme inhibitor of bacterial origin known as leupeptin which inhibits cathepsin B, H and L. Homogenates of rat kidney and placenta also produced congenital defects; the concommitant electron microscopical changes in the yolk sac suggest that these effects too are due to alterations in the availability or quality of histiotroph. 相似文献
11.
Shen C Lancaster CS Shi B Guo H Thimmaiah P Bjornsti MA 《Molecular and cellular biology》2007,27(20):7007-7017
The conserved TOR (target of rapamycin) kinase is part of a TORC1 complex that regulates cellular responses to environmental stress, such as amino acid starvation and hypoxia. Dysregulation of Akt-TOR signaling has also been linked to the genesis of cancer, and thus, this pathway presents potential targets for cancer chemotherapeutics. Here we report that rapamycin-sensitive TORC1 signaling is required for the S-phase progression and viability of yeast cells in response to genotoxic stress. In the presence of the DNA-damaging agent methyl methanesulfonate (MMS), TOR-dependent cell survival required a functional S-phase checkpoint. Rapamycin inhibition of TORC1 signaling suppressed the Rad53 checkpoint-mediated induction of ribonucleotide reductase subunits Rnr1 and Rnr3, thereby abrogating MMS-induced mutagenesis and enhancing cell lethality. Moreover, cells deleted for RNR3 were hypersensitive to rapamycin plus MMS, providing the first demonstration that Rnr3 contributes to the survival of cells exposed to DNA damage. Our findings support a model whereby TORC1 acts as a survival pathway in response to genotoxic stress by maintaining the deoxynucleoside triphosphate pools necessary for error-prone translesion DNA polymerases. Thus, TOR-dependent cell survival in response to DNA-damaging agents coincides with increased mutation rates, which may contribute to the acquisition of chemotherapeutic drug resistance. 相似文献
12.
13.
14.
Whether different subsets of mitochondria play distinct roles in shaping intracellular Ca2+ signals is presently unresolved. Here, we determine the role of mitochondria located beneath the plasma membrane in controlling (a) Ca2+ release from the endoplasmic reticulum (ER) and (b) capacitative Ca2+ entry. By over-expression of the dynactin subunit dynamitin, and consequent inhibition of the fission factor, dynamin-related protein (Drp-1), mitochondria were relocalised from the plasma membrane towards the nuclear periphery in HeLa cells. The impact of these changes on free calcium concentration in the cytosol ([Ca2+]c), mitochondria ([Ca2+]m) and ER ([Ca2+]ER) was then monitored with specifically-targeted aequorins. Whilst dynamitin over-expression increased the number of close contacts between the ER and mitochondria by >2.5-fold, assessed using organelle-targeted GFP variants, histamine-induced changes in organellar [Ca2+] were unaffected. By contrast, Ca2+ influx elicited significantly smaller increases in [Ca2+]c and [Ca2+]m in dynamitin-expressing than in control cells. These data suggest that the strategic localisation of a subset of mitochondria beneath the plasma membrane is required for normal Ca2+ influx, but that the transfer of Ca2+ ions between the ER and mitochondria is relatively insensitive to gross changes in the spatial relationship between these two organelles. 相似文献
15.
Kim K Ryu JH Park JW Kim MS Chun YS 《Biochemical and biophysical research communications》2005,331(1):78-85
Spermidine/spermine N(1)-acetyltransferase (SSAT) is the key enzyme with regard to the maintenance of intracellular polyamine levels. It is an inducible enzyme, which may participate in adaptive responses to environmental stress. However, little is known regarding its responses to oxygen or nutrient deficiencies. Using microarray assays, we discovered that SSAT was enhanced under both oxygen- and iron-deficient conditions. However, RT-PCR revealed that the SSAT mRNA was not induced; rather, an mRNA variant was newly expressed. In this variant, the splicing-in of 110 bases induces early termination, generating a truncated isoform which lacks catalytic motifs. The variant expression occurs in other cancer cells and was irrelevant to both hypoxia-inducible factor 1 and to the redox state. We attempted to determine its role, using stable cell-lines. The expressed isoform was found to promote cell survival under iron-deficient conditions and blocked the cleavage of poly(ADP-ribose) polymerase. This isoform may contribute to the progression of tumors of a more malignant phenotype under poor conditions and may constitute a potential target for anticancer therapy. 相似文献
16.
Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide 总被引:2,自引:0,他引:2
The killing of cultured hepatocytes by tert-butyl hydroperoxide (TBHP) occurs by different mechanisms depending on the presence or absence of the antioxidant N,N'-diphenylphenylenediamine (DPPD). In either situation there is evidence of mitochondrial damage. The mitochondrial inner membrane potential is lost, a result determined by the release from the cells of the lipophilic cation [3H]triphenylmethylphosphonium (TPMP+). Deenergization of the mitochondria is accompanied by a loss of ATP. Oligomycin reduced ATP stores without release of TPMP+ or without effect on the viability of the hepatocytes over the same time course that TBHP killed the majority of the cells. Monensin, a H+/Na+ ionophore, potentiated the toxicity of tert-butyl hydroperoxide in the presence or absence of DPPD. By contrast, extracellular acidosis reduced the toxicity of tert-butyl hydroperoxide in the presence or absence of DPPD. Neither monensin nor extracellular acidosis affected the metabolism of tert-butyl hydroperoxide, the release of TPMP+, or the extent of the peroxidation of cellular lipids. These data document the presence of mitochondrial damage in hepatocytes intoxicated with TBHP in both the presence and absence of DPPD. Furthermore, the potentiation by monensin is readily explained by the proposal that mitochondrial deenergization is accompanied by an intracellular acidosis. Such acidosis tends to delay the development of lethal cell injury. The protective effect of extracellular acidosis supports this interpretation. 相似文献
17.
Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death 下载免费PDF全文
Since a release of intracellular contents can induce local inflammatory responses, mechanisms that lead to loss of plasma membrane integrity in cell death are important to know. We showed previously that deficiency of the plasma membrane Ca2+ ATPase 4 (PMCA4) in L929 cells impaired tumor necrosis factor alpha (TNF-alpha)-induced enlargement of lysosomes and reduced cell death. The lysosomal changes can be determined by measuring the total volume of intracellular acidic compartments per cell (VAC), and we show here that inhibition of the increase in VAC due to PMCA4 deficiency not only reduced cell death but also converted TNF-alpha-induced cell death from a process involving disruption of the plasma membrane to a cell demise with a nearly intact plasma membrane. The importance of the size of lysosomes in determining plasma membrane integrity during cell death was supported by the observations that chemical inhibitors that reduce VAC also reduced the plasma membrane disruption induced by TNF-alpha in wild-type L929 cells, while increases in VAC due to genetic mutation, senescence, cell culture conditions, and chemical inhibitors all changed the morphology of cell death from one with an originally nearly intact plasma membrane to one with membrane disruption in a number of different cells. Moreover, the ATP depletion-mediated change from apoptosis to necrosis is also associated with the increases of VAC. The increase in lysosomal size may due to intracellular self-digestion of dying cells. Big lysosomes are easy to rupture, and the release of hydrolytic enzymes from ruptured lysosomes can cause plasma membrane disruption. 相似文献
18.
19.
Aimin Li Yadong Wang Lijuan Deng Xinmei Zhao Qun Yan Yidong Cai Jianhua Lin Yang Bai Side Liu Yali Zhang 《Cytotechnology》2013,65(1):71-81
Nitrocellulose membranes, one of the most important and oldest cellulose derivatives, are commonly used for nucleic acid and protein detection in research and diagnostic applications. However, a limited number of studies have explored whether they can act as scaffolds for cell growth. In this study, we investigated this polymeric material for its ability to support the growth of human cells. Eight established cell lines were examined for adherence, growth, spread, and survival on nitrocellulose membranes by optical microscopy after hematoxylin and eosin and/or immunocytochemical staining and by scanning electron microscopy. Apoptosis and leakage of lactate dehydrogenase (LDH) were also assessed. All cells readily adhered to and spread on the surface of nitrocellulose membranes as well as coverslips, and the cells maintained the expression of digestive system-specific genes. No significant change was detected in apoptosis or leakage of LDH from cells grown on nitrocellulose membranes. These results suggested that nitrocellulose membranes have a suitable cytocompatibility towards human cells and that they might be used for tissue-engineering scaffolds. Moreover, we demonstrate an additional and underused property of nitrocellulose of specific relevance to microscopic imaging, as it can be rendered virtually transparent, thus the cells growing on such membranes can be observed directly under an optical microscope after staining. 相似文献
20.
Summary The molecular mechanism of anion exchange across the human red blood cell membrane was assessed with the fluorescent substrate analog NBD-taurine and the method of continuous monitoring of transport by fluorescence. The efflux of NBD-taurine was studied under a variety of experimental conditions such as temperature, pH and anion composition of cells and media. The temperature profile of NBD-taurine transfer from Cl-loaded cells into Cl media resembled that of Cl self-exchange, whereas that of NBD-taurine transfer from sulfate-loaded cells into sulfate media resembled that of sulfate self-exchange. Although the pH profiles of NBD-taurine transfer from Cl-loaded cells into Cl media and that of Cl self-exchange resembled each other, the analogous transfer with sulfate replacing Cl was markedly different. These and other data were analyzed and found to be consistent with a model which comprises the following: (a) a H+-titratable group in the carrier mechanism; (b) alteration of transport sites between the two sides of the membrane (i.e., ping-pong kinetics); and (c) transmembrane distribution of transport sites which is modulated by pH. It is shown that NBD-taurine transfer represents a tracer flux of a fluorescent substrate which gives a measure for the presence of monovalent transport sites at the inner surface of the membrane. The latter is markedly affected by the relative concentrations of anions and H+ on both sides of the red blood cell membrane. 相似文献