共查询到20条相似文献,搜索用时 0 毫秒
1.
I.C. Robbins G.J. Kirkpatrick S.M. Blackwell J. Hillier C.A. Knight M.A. Moline 《Harmful algae》2006,5(6):749-761
Blooms of toxic algae are increasing in magnitude and frequency around the globe, causing extensive economic and environmental impacts. On the west coast of Florida, blooms of the toxic dinoflagellate Karenia brevis (Davis) have been documented annually for the last 30 years causing respiratory irritation in humans, fish kills, and toxin bioaccumulation in shellfish beds. As a result, methods need to be established to monitor and predict bloom formation and transport to mitigate their harmful effects on the surrounding ecosystems and local communities. In the past, monitoring and mitigation efforts have relied on visual confirmation of water discoloration, fish kills, and laborious cell counts, but recently satellite remote sensing has been used to track harmful algal blooms (HABs) along the Florida coast. Unfortunately satellite ocean color is limited by cloud cover, lack of detection below one optical depth, and revisit frequency, all of which can lead to extended periods without data. To address these shortcomings, an optical phytoplankton discriminator (OPD) was developed to detect K. brevis cells in mixed phytoplankton assemblages. The OPD was integrated into autonomous underwater vehicle (AUV) platforms to gather spatially and temporally relevant data that can be used in collaboration with satellite imagery to provide a 3D picture of bloom dynamics over time. In January 2005, a Remote Environmental Monitoring UnitS (REMUS) AUV with an OPD payload was deployed on the west coast of Florida to retrieve a similarity index (SI), which indicates when K. brevis dominates the phytoplankton community. SI was used to monitor a K. brevis bloom in relation to temperature, salinity, chlorophyll, and ocean currents. Current speed, SI, temperature, salinity, and chlorophyll a from the AUV were used to quantify a 1 km displacement of the K. brevis bloom front that was observed over the deployment period. The ability to monitor short term bloom movement will improve monitoring and predictive efforts that are used to provide warnings for local tourism and fishing industries. In addition, understanding the fine scale environmental conditions associated with bloom formation will increase our ability to predict the location and timing of K. brevis bloom formation. This study demonstrates the use of one autonomous platform and provides evidence that a nested array of AUVs and moorings equipped with new sensors, combined with remote sensing, can provide an early warning and monitoring system to reduce the impact of HABs. 相似文献
2.
Justin C. Biffinger Lisa A. Fitzgerald Erinn C. Howard Emily R. Petersen Preston A. Fulmer Peter K. Wu Bradley R. Ringeisen 《Applied microbiology and biotechnology》2013,97(1):135-142
Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application—renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems. 相似文献
3.
Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e.g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312-7). Whilst such vehicles have many potential advantages in operating in complex environments (e.g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximately 0.9) at low forward speeds. Current boxfish-inspired vehicles are propelled by a low aspect ratio, 'plate-like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximately 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e.g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e.g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/or provide more power to other functions (e.g. communications). 相似文献
4.
Maneuvering hydrodynamics of fish and small underwater vehicles 总被引:1,自引:0,他引:1
Bandyopadhyay PR 《Integrative and comparative biology》2002,42(1):102-117
The understanding of fish maneuvering and its application tounderwater rigid bodies are considered. The goal is to gaininsight into stealth. The recent progress made in NUWC is reviewed.Fish morphology suggests that control fins for maneuverabilityhave unique scalar relationships irrespective of their speedtype. Maneuvering experiments are carried out with fish thatare fast yet maneuverable. The gap in maneuverability betweenfish and small underwater vehicles is quantified. The hydrodynamicsof a dorsal fin based brisk maneuvering device and a dual flappingfoil device, as applied to rigid cylindrical bodies, are described.The role of pectoral wings in maneuvering and station keepingnear surface waves is discussed. A pendulum model of dolphinswimming is presented to show that body length and tail flappingfrequency are related. For nearly neutrally buoyant bodies,Froude number and maneuverability are related. Analysis of measurementsindicates that the Strouhal number of dolphins is a constant.The mechanism of discrete and deterministic vortex sheddingfrom oscillating control surfaces has the property of largeamplitude unsteady forcing and an exquisite phase dependence,which makes it inherently amenable to active control for precisionmaneuvering. Theoretical control studies are carried out todemonstrate the feasibility of maneuverability of biologicallyinspired bodies under surface waves. The application of fishhydrodynamics to the silencing of propulsors is considered.Two strategies for the reduction of radiated noise are developed.The effects of a reduction of rotational rate are modeled. Theactive cambering of blades made of digitally programmable artificialmuscles, and their thrust enhancement, are demonstrated. Next,wake momentum filling is carried out by artificial muscles atthe trailing edge of a stator blade of an upstream stator propulsor,and articulating them like a fish tail. A reduction of radiatednoise, called blade tonals, is demonstrated theoretically. 相似文献
5.
6.
Insects, being perhaps more reliant on image motion cues than mammals or higher vertebrates, are proving to be an excellent organism in which to investigate how information on optic flow is exploited to guide locomotion and navigation. This paper describes one example, illustrating how bees perform grazing landings on a flat surface. A smooth landing is achieved by a surprisingly simple and elegant strategy: image velocity is held constant as the surface is approached, thus automatically ensuring that flight speed is close to zero at touchdown. No explicit knowledge of flight speed or height above the ground is necessary. The feasibility of this landing strategy is tested by implementation in a robotic gantry, and its applicability to autonomous airborne vehicles is discussed. 相似文献
7.
Light is a source of both energy and information for the biota.The spatial, temporal and spectral variability of light experiencedby marine phytoplankton differs significantly from that experiencedby terrestrial plants, due to the selective attenuation of solarirradiance in the aquatic medium. In the present study we analysedsuch variability and focused, in particular, on those bandswithin the spectrum that may act as potential signals for physiologicalresponses. Our results demonstrate that the spectral variationof the light field carries information on the time of day, thevertical position and the presence of very close neighbours,also underwater. This is consistent with the recent findingsof a widespread occurrence of photoreceptors in marine algae.We show also that red photoreceptors, whose presence in marinealgae was difficult to reconcile with the strong attenuationof long wavelengths by water, may be triggered at depth by thered light generated by transpectral processes. 相似文献
8.
9.
B. Le S. Tchize Ndejouong I. Sattler H.-M. Dahse E. Kothe C. Hertweck 《Bioorganic & medicinal chemistry letters》2009,19(22):6473-6476
Six novel isoflavone derivatives along with four known isoflavones were isolated from a culture of a highly nickel-resistant strain of Streptomyces mirabilis from a former uranium mining area. The structures of 7-hydroxy-3′,5′-dihydroxyisoflavone (5), 5,7-dihydroxy-3′,5′-dihydroxyisoflavone (6), 2′-hydroxy-3′-methoxygenistein (7), as well as hydroisoflavones A–C (8–10) were elucidated by MS and NMR analyses. Compounds 8–10 feature yet unprecedented types of non-aromatic, hydroxylated B rings, which result from plant isoflavone biotransformation. All new compounds display weak cytotoxic but potent antiproliferative activities. The anti-oestrogenic properties of 8 against MCF-7 human breast cancer cell line (GI50: 6 μM) is even higher than the reference compound genistein. 相似文献
10.
Object systems are studied on which plane autonomous state classifiers act as measuring devices. Several conclusions are drawn regarding the structure of the object system. The problem of coupling a PASC with an object system is considered in detail. 相似文献
11.
P J Hahn L Giddings J Longo M J Lane J Scalzi J Hozier 《Genetic analysis, techniques and applications》1992,9(1):17-25
Radiation-reduced chromosomes provide valuable reagents for cloning and mapping genes, but they require multiple rounds of x-ray deletion mutagenesis to excise unwanted chromosomal DNA while maintaining physical attachment of the desired DNA to functional host centromere and telomere sequences. This requirement for chromosomal rearrangements can result in undesirable x-ray induced chromosome chimeras where multiple non-contiguous chromosomal fragments are fused. We have developed a cloning system for maintaining large donor subchromosomal fragments of mammalian DNA in the megabase size range as acentric chromosome fragments (double-minutes) in cultured mouse cells. This strategy relies on randomly inserted selectable markers for donor fragment maintenance. As a test case, we have cloned random segments of Chinese hamster ovary (CHO) chromosomal DNA in mouse EMT-6 cells. This was done by cotransfecting plasmids pZIPNeo and pSV2dhfr into DHFR-CHO cells followed by isolation of a Neo + DHFR + CHO donor colony and radiation-fusion-hybridization (RFH) to EMT-6 cells. We then selected for initial resistance to G418 and then to increasing levels of methotrexate (MTX). Southern analysis of pulsed-field gel electrophoresis of rare-cutting restriction endonuclease digestions of DNA from five RFH isolates indicated that all five contain at least 600 kb of unrearranged CHO DNA. In situ hybridization with the plasmids pZIPNeo and pSV2dhfr to metaphase chromosomes of MTX-resistant hybrid EMT-6 lines indicated that these markers reside on double-minute chromosomes. 相似文献
12.
13.
14.
Beom Soo Kim In Duck Jung Jong Sik Kim Jung-heon Lee In Young Lee Kyung Bok Lee 《Biotechnology letters》2000,22(14):1127-1130
The use of curdlan, a natural -1,3-glucan, in protein drug delivery vehicles was studied by carrying out in vitro release studies with curdlan gels containing bovine serum albumin (BSA) as a model protein. Addition of urea (8 M) decreased the gel formation temperature to 37°C. Curdlan was hydroxyethylated in order to form gels under mild conditions such as physiological temperature and pH. In gels formed in 8 M urea solution, urea was almost released after 2 h while BSA was completely released after 45–100 h. The total time for complete release of BSA increased with curdlan concentration within gels. The strength of hydroxyethylated curdlan gels (385.7 dyne cm–2) was weaker than that of curdlan gels formed in 8 M urea solution (6277 dyne cm–2). 相似文献
15.
The synthesis and characterization of two generation-4 polyamidoamine (PAMAM) dendrimers with S-nitrosothiol exteriors are reported. The hyperbranched macromolecules were modified with either N-acetyl-D, L-penicillamine (NAP) or N-acetyl-L-cysteine (NACys) and analyzed via 1H and 13C NMR, UV absorption spectroscopy, MALDI-TOF mass spectrometry, and size exclusion chromatography. Treatment of the dendritic thiols with nitrite solutions yielded the corresponding S-nitrosothiol nitric oxide (NO) donors (G4-SNAP, G4-NACysNO). Chemiluminescent NO detection demonstrated that the dendrimers were capable of storing approximately 2 micromol NO x mg (-1) when exposed to triggers of S-nitrosothiol decomposition (e.g., light and copper). The kinetics of NO release were found to be highly dependent on the structure of the nitrosothiol (i.e., tertiary vs primary) and exhibited similar NO release characteristics to classical small molecule nitrosothiols reported in the literature. As a demonstration of utility, the ability of G4-SNAP to inhibit thrombin-mediated platelet aggregation was assayed. At equivalent nitrosothiol concentrations (25 microM), the G4-SNAP dendrimer resulted in a 62% inhibition of platelet aggregation, compared to only 17% for the small molecule NO donor. The multivalent NO storage, the dendritic effects exerted on nitrosothiol stability and reactivity, and the utility of dendrimers as drug delivery vehicles highlight the potential of these constructs as clinically useful S-nitrosothiol-based therapeutics. 相似文献
16.
17.
The aim of the present study was to investigate the potential of a nanoemulsion formulation for transdermal delivery of aceclofenac. Various oil-in-water nanoemulsions were prepared by the spontaneous emulsification method. The nanoemulsion area was identified by constructing pseudoternary phase diagrams. The prepared nanoemulsions were subjected to different thermodynamic stability tests. The nanoemulsion formulations that passed thermodynamic stability tests were characterized for viscosity, droplet size, transmission electron microscopy, and refractive index. Transdermal permeation of aceclofenac through rat abdominal skin was determined by Franz diffusion cell. The in vitro skin permeation profile of optimized formulations was compared with that of aceclofenac conventional gel and nanoemulsion gel. A significant increase in permeability parameters such as steady-state flux (J(ss)), permeability coefficient (K(p)), and enhancement ratio (E(r)) was observed in optimized nanoemulsion formulation F1, which consisted of 2% wt/wt of aceclofenac, 10% wt/wt of Labrafil, 5% wt/wt of Triacetin, 35.33% wt/wt of Tween 80, 17.66% wt/wt of Transcutol P, and 32% wt/wt of distilled water. The anti-inflammatory effects of formulation F1 showed a significant increase (P < .05) in percent inhibition value after 24 hours when compared with aceclofenac conventional gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of aceclofenac. 相似文献
18.
With the successful development of organic/polymeric light emitting diodes, many organic and polymeric fluorophores with high quantum efficiencies and optical stability were synthesized. However, most of these materials which have excellent optical properties are insoluble in water, limiting their applications in biological fields. Herein, we used micelles formed from an amino-group-containing poly(ε-caprolactone)-block-poly(ethylene glycol) (PCL-b-PEG-NH2) to incorporate a hydrophobic blue emitter oligofluorene (OF) to enable its application in biological conditions. Although OF is completely insoluble in water, it was successfully transferred into aqueous solutions with a good retention of its photophysical properties. OF exhibited a high quantum efficiency of 0.84 in a typical organic solvent of tetrahydrofuran (THF). In addition, OF also showed a good quantum efficiency of 0.46 after being encapsulated into micelles. Two cells lines, human glioblastoma (U87MG) and esophagus premalignant (CP-A), were used to study the cellular internalization of the OF incorporated micelles. Results showed that the hydrophobic OF was located in the cytoplasm, which was confirmed by co-staining the cells with nucleic acid specific SYTO 9, lysosome specific LysoTracker Red®, and mitochondria specific MitoTracker Red. MTT assay indicated non-toxicity of the OF-incorporated micelles. This study will broaden the application of hydrophobic functional organic compounds, oligomers, and polymers with good optical properties to enable their applications in biological research fields. 相似文献
19.
Weslen S. Vedakumari Periyathambi Prabu Saravana C. Babu Thotapalli P. Sastry 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Background
Several issues have been raised emphasizing the harmful toxic effects of metal nanoparticles towards biological systems. Search of biological nanoparticles with excellent biocompatibility and bioavailability could address this problem.Methods
Fibrin nanoparticles (FNP) were prepared using a novel technique and characterized for their physico-chemical properties. In vitro studies were performed to examine cytotoxicity and cellular uptake of FNP. Innate immune response to FNP was studied by (i) estimating in vitro generation of complement split products, C3a and C4d and (ii) in vivo expression of pro-inflammatory cytokines, TNF-α, IL-1 and IL-6. In vivo biodistribution study was carried out by intravenous administration of FITC-labelled FNP in mice.Results
FNP were spherical with size ranging from 25 to 28 nm. In vitro studies proved the biocompatibility of the nanoparticles, with their distribution across the cytoplasm and nucleus of treated cells. Complement activation studies showed insignificant increase in the level of C3a when compared with positive control. RT-PCR results revealed significant upregulation of TNF-α and downregulation of IL-6 cytokines after 6 h of FNP administration. In vivo biodistribution studies showed moderate blood circulation time, with predominant distribution of nanoparticles in the liver followed by the lungs, kidney and spleen. Haematology, serum biochemistry, and histopathology analyses demonstrated that FNP were non-toxic.Conclusion
Owing to their small size, low cost, ease of preparation and excellent biocompatibility, FNP might be a promising novel material for drug delivery applications.General significance
Our results demonstrate the safe and promising use of FNP for biomedical applications. 相似文献20.
Biophysical aspects of using liposomes as delivery vehicles 总被引:5,自引:0,他引:5
Ulrich AS 《Bioscience reports》2002,22(2):129-150
Liposomes are used as biocompatible carriers of drugs, peptides, proteins, plasmic DNA, antisense oligonucleotides or ribozymes, for pharmaceutical, cosmetic, and biochemical purposes. The enormous versatility in particle size and in the physical parameters of the lipids affords an attractive potential for constructing tailor-made vehicles for a wide range of applications. Some of the recent literature will be reviewed here and presented from a biophysical point of view, thus providing a background for the more specialized articles in this special issue on liposome technology. Different properties (size, colloidal behavior, phase transitions, and polymorphism) of diverse lipid formulations (liposomes, lipoplexes, cubic phases, emulsions, and solid lipid nanoparticles) for distinct applications (parenteral, transdermal, pulmonary, and oral administration) will be rationalized in terms of common structural, thermodynamic and kinetic parameters of the lipids. This general biophysical basis helps to understand pharmaceutically relevant aspects such as liposome stability during storage and towards serum, the biodistribution and specific targeting of cargo, and how to trigger drug release and membrane fusion. Methods for the preparation and characterization of liposomal formulations in vitro will be outlined, too. 相似文献