首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacillus delbrueckii cultured with peanut oil cake as the carbon source yielded 5.35 mg ml(-1) of biosurfactant production. Five sets of microcosm biodegradation experiments were carried out with crude oil as follows: set 1 - bacterial cells+crude oil, set 2 - bacterial cells+crude oil+fertilizer, set 3 - bacterial cells+crude oil+biosurfactant, set 4 - bacterial cells+crude oil+biosurfactant+fertilizer, set 5 - with no bacterial cells, fertilizer and biosurfactant (control). Maximum degradation of crude oil was observed in set 4 (75%). Interestingly, when biosurfactant and bacterial cells were used (set 3), significant oil biodegradation activity occurred and the difference between this treatment and that in set 4 was 7% higher degradation level in microcosm experiments. It is evident from the results that biosurfactants alone is capable of promoting biodegradation to a large extent without added fertilizers.  相似文献   

2.
Seawater injection into oil reservoirs for purposes of secondary oil recovery is frequently accompanied by souring (increased sulfide concentrations). Production of hydrogen sulfide causes various problems, such as microbiologically influenced corrosion (MIC) and deterioration of crude oil. Sulfate-reducing bacteria (SRB) are considered to be major players in souring. Volatile fatty acids (VFAs) in oil-field water are believed to be produced by microbial degradation of crude oil. The objective of this research was to investigate mechanisms of souring, focusing specifically on VFA production via crude oil biodegradation. To this end, a microbial consortium collected from an oil–water separator was suspended in seawater; crude oil or liquid n-alkane mixture was added to the culture medium as the sole carbon source, and the culture was incubated under anaerobic conditions for 190 days. Physicochemical analysis showed that preferential toluene degradation and sulfate reduction occurred concomitantly in the culture containing crude oil. Sulfide concentrations were much lower in the alkane-supplemented culture than in the crude oil-supplemented culture. These observations suggest that SRB are related to the toluene activation and VFA consumption steps of crude oil degradation. Therefore, the electron donors for SRB are not only VFA, but many components of crude oil, especially toluene. Alkanes were also degraded by microorganisms, but did not contribute to reservoir souring.  相似文献   

3.
Effect of iron on the biodegradation of petroleum in seawater.   总被引:5,自引:1,他引:4       下载免费PDF全文
The biodegradation of South Louisiana (SL) crude oil and the effects of nitrogen, phosphorus, and iron supplements on this process were compared in a polluted (10,900 oil degraders per liter) and in a relatively clean (750 oil degraders per liter) littoral seawater sample taken along the New Jersey coast. Without supplements, the biodegradation of SL crude oil was negligible in both seawater samples. Addition of nitrogen and phosphorus allowed very rapid biodegradation (72% in 3 days) in polluted seawater. Total iron in this seawater sample was high (5.2 muM), and the addition of iron did not increase the biodegradation rate further. In the less polluted and less iron-rich (1.2 muM) seawater sample, biodegradation of SL crude oil was considerably slower (21% in 3 days) and the addition of chelated iron had a stimulating effect. Ferric octoate was shown to have a similar stimulating effect on SL crude oil biodegradation as chelated iron. Ferric octoate, in combination with paraffinized urea and octylphosphate, is suitable for treatment of floating oil slicks. We conclude that spills of SL crude and similar oils can be cleaned up rapidly and efficiently by stimulated biodegradation, provided the water temperatures are favorable.  相似文献   

4.
This work illustrates the effectiveness of composting and vermicomposting in degrading fuel-in-water emulsions from oil spills (chapapote), and the isolation of potentially useful microorganisms for its biodegradation. Firstly, an alternative to the biodegradation of asphaltens from the Prestige oil spill (still present in some chapapote rafts in the Cantabrian coast) by means of the application of composting techniques to a microbial partnership acclimated to fuel-oil is offered. Our aim is that, after a relatively short period of time, the microorganisms can obtain its source of carbon and energy from asphaltens. The addition of metabolic co-substrates, like cow bed and potato peelings, allows the fragmentation of complex compounds into smaller structures, susceptible to further degradation. Afterwards, a maturation of the compost by means of a treatment with earthworms (Eisenia foetida) is necessary. Thus, through the vermicomposting it will be possible to obtain a valued product, useful in the processes of ground amendment, with little presence of asphaltens and occluded polycyclic aromatic hydrocarbons, rich in humus, and with an important bacterial flora of Bacillus genera, so that it can be typical of co-activators and accelerating products in composting processes. Along with this article, we show some parameters that control the evolution of the compost products (evolved gases, acidity, temperature and humidity); the chemical and microbiological analytical results; and the germination assays of vermicomposting. Results reveal that by using microorganisms living in either earthworm intestines (Stenotrophomonas maltophilia) or vermiculture substrates (Scedosporium apiospermium), it is possible to degrade and to eliminate the polycyclic asphaltens into CO(2) and H(2)O, helped by evaporation, dissolution and/or photo-oxidation processes. The obtained end product has contents of interesting vegetal nutrients and, mainly, it displays very high germination indices.  相似文献   

5.
The indigenous microbiota of polluted coastal seawater in Tunisia was enriched by increasing the concentration of zarzatine crude oil. The resulting adapted microbiota was incubated with zarzatine crude oil as the only carbon and energy source. Crude oil biodegradation capacity and bacterial population dynamics of the microbiota were evaluated every week for 28 days (day 7, day 14, day 21, and day 28). Results show that the percentage of petroleum degradation was 23.9, 32.1, 65.3, and 77.8%, respectively. At day 28, non-aromatic and aromatic hydrocarbon degradation rates reached 92.6 and 68.7%, respectively. Bacterial composition of the adapted microflora was analysed by 16S rRNA gene cloning and sequencing, using total genomic DNA extracted from the adapted microflora at days 0, 7, 14, 21, and 28. Five clone libraries were constructed and a total of 430 sequences were generated and grouped into OTUs using the ARB software package. Phylogenetic analysis of the adapted microbiota shows the presence of four phylogenetic groups: Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. Diversity indices show a clear decrease in bacterial diversity of the adapted microflora according to the incubation time. The Proteobacteria are the most predominant (>80%) at day 7, day 14 and day 21 but not at day 28 for which the microbiota was reduced to only one OTU affiliated with the genus Kocuria of the Actinobacteria. This study shows that the degradation of zarzatine crude oil components depends on the activity of a specialized and dynamic seawater consortium composed of different phylogenetic taxa depending on the substrate complexity.  相似文献   

6.
Bioremediation is gaining favorable attention as a more economical and environmentally friendly technique for the remediation of crude oil hydrocarbons. This makes the search for crude oil–degrading microbes very crucial. In this study, the isolation and identification of actinobacteria in soil samples from a selected crude oil spill site were carried out. Eighteen isolates from different soil depths (20–120 cm) were screened for their ability to grow on crude oil–based medium (COBM). Actinomyces naeslundii, Actinomyces viscosus, Actinomyces israelii, Actinomyces meyeri, and Nocardia formicae from a 20 cm soil depth exhibited higher growth profiles on COBM than on glucose-based medium (GBM). A. viscosus and A. isrealii exhibited 5- and 3-fold increase in growth over GBM and were selected for biodegradation studies. Growth kinetics and residual crude oil were used to measure the degradation efficiency of A. viscosus and A. israeli over varying crude oil concentrations. Surprisingly, A. viscosus and A. isrealii achieved 98% degradation of 10 g/L crude oil in 12 days and 97% degradation of 30, 50, and 75 g/L in 16 and 18 days, respectively. Specific activity of total peroxidase was assayed over the biodegradation period. Peroxidase activity increased with degradation efficiency of A. viscosus and A. isrealii, suggesting that peroxidases play a key role in the crude oil biodegradation process. The unique tolerance exhibited by A. viscosus and A. israelii to crude oil and high crude oil degradation efficiencies indicate their promising potential for bioremediation applications.  相似文献   

7.
Experiments have been performed to screen eight microbial commercial products that, according to the manufacturers, are able to degrade crude oil. This study compared the crude oil biodegradation activity of commercial inocula with that of natural inocula (activated sludge and tropical aquarium water). Some of the latter were previously adapted to the crude oil as the only carbon source. Nutrients and sorbents in the commercial formulations were eliminated, and each inoculum was precultured on marine yeast extract medium. Crude oil biodegradability tests were conducted with close initial substrate concentration to initial bacterial concentration ratios (S0/X0) of 0.94 g of crude oil/10(9) CFU, which allowed a comparison of biodegradation activity. The inocula oxidized the crude oil after a short lag time of less than 3-18 days. After that time, the rate of oxidation varied between 45 and 244 mg O2/(L.day). Crude oil biodegradation after a 28-day test was effective only for 10 out of 12 inocula (from 0.1 to 25% in weight). Biodegradation mainly corresponded to the saturated fraction of the crude oil; the asphaltene fraction was never significantly biodegraded. Our results led to the conclusion that natural inocula, either adapted or not adapted to crude oil, were the most active (from 16 to 25% of loss in crude oil weight) and only one commercial inoculum was able to degrade 18% of the crude oil. Other inocula had a biodegradation activity ranging from 0.1 to 14%.  相似文献   

8.
Crude oil is a complex mixture of several different structural classes of compounds including alkanes, aromatics, heterocyclic polar compounds, and asphaltenes. The rate and extent of microbial degradation of crude oil depends on the interaction between the physical and biochemical properties of the biodegradable compounds and their interactions with the non-biodegradable fraction. In this study we have systematically altered the concentration of non-biodegradable material in the crude oil and analyzed its impact on transport of the biodegradable components of crude oil to the microorganisms. We have also developed a mathematical model that explains and accounts for the dependence of biodegradation of crude oil through a putative bioavailability parameter. Experimental results indicate that as the asphaltene concentration in oil increases, the maximum oxygen uptake in respirometers decreases. The mathematically fitted bioavailability parameter of degradable components of oil also decreases as the asphaltene concentration increases.  相似文献   

9.
Summary A laboratory screening protocol was designed and conducted to test the efficacy of eight commercial bacterial cultures and two non-bacterial products in enhancing the biodegradation of weathered Alaska North Slope crude oil in closed flasks. Three lines of evidence were used to support the decision to progress to field testing in Prince William Sound: rapid onset and high rate of oxygen uptake, substantial growth of oil degraders, and significant degradation of the aliphatic and aromatic hydrocarbon fractions of the weathered Alaska North Slope crude oil. A product had to enhance biodegradation greater than that achieved with excess mineral nutrients. Experiments were conducted in closed respirometer flasks and shake flasks, using seawater from Prince William Sound and weathered crude oil from a contaminated beach. Analysis of the data resulted in selection of two of the ten products for field testing. Both were bacterial products. Findings suggested that the indigenous Alaskan microorganisms were primarily responsible for the biodegradation in the closed flasks and respirometer vessels.  相似文献   

10.
Summary Enrichment cultures from oil-contaminated beach material from Prince William Sound, Alaska, generated both a mixed bacterial community of indigenous, oil-degrading marine microorganisms and a pure culture oil-degrader, strain EI2V. The mixed and axenic cultures were used in comparative shake flask studies of inoculation on biodegradation of Prudhoe Bay crude oil. Within 12 h following inoculation of homogenized, oiled beach material with the mixed culture, total CO2 production was increased 2-fold relative to a noninoculated control. Moreover, measurements of phenanthrene degradation (as determined by the release of14CO2 from [9-14C]phenanthrene) showed a 2-or 3-fold greater degradation when inoculated with either strain EI2V or with the mixed culture, respectively. However, as medium was replaced by a simulated tidal cycle, the observed stimulation of CO2 production decreased, and the addition of strain EI2V had no greater effect on total CO2 production than the addition of inorganic nutrients alone. Chemical analysis of oil recovered after 7 days incubation also suggested that, while these cultures are capable of efficient biodegradation of Prudhoe Bay crude in liquid culture, inoculation of beach material with high numbers of these microorganisms had little effect on the rate and extent of biodegradation of weathered crude oil. Overall, the sustained stimulatory effect was no greater than that observed with the addition of inorganic nutrients alone.  相似文献   

11.
This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just 6.6 × 10(1) CFU/ml, with these values dramatically increased in the weathered oil, reaching 4.1 × 10(4) CFU/ml. The weathered oil (dominated by >C30 fractions; 750,000 +/- 150,000 mg/l) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations 3,400 +/- 700 mg/l and 1,700 +/- 340 mg/l for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% (254,000 +/- 40,000 mg/l) and 66% (285,000 +/- 45,000 mg/l) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.  相似文献   

12.
Soil contamination with crude oil from petrochemicals and oil exploitation is an important worldwide issue. Comparing available remediation techniques, bioremediation is widely considered to be a cost-effective choice; however, slow degradation of crude oil is a common problem due to the low numbers of bacteria capable of degrading petroleum hydrocarbons and the low bioavailability of contaminants in soil. To promote crude oil removal, biocarrier for immobilization of indigenous hydrocarbon-degrading bacteria was developed using porous materials such as activated carbon and zeolite. Microbial biomass reached 1010 cells g?1 on activated carbon and 106 cells g?1 on zeolite. Total microbial and dehydrogenase activities were approximately 12 times and 3 times higher, respectively, in activated carbon than in zeolite. High microbial colonization by spherical and rod shapes were observed for the 5–20 μm thick biofilm on the outer surface of both biocarriers using electronic microscopy. Based on batch-scale experiments containing free-living bacterial cultures and activated carbon biocarrier into crude oil contaminated soil, biocarrier enhanced the biodegradation of crude oil, with 48.89% removal, compared to natural attenuation with 13.0% removal, biostimulation (nutrient supplement only) with 26.3% removal, and bioaugmentation (free-living bacteria) with 37.4% removal. In addition, the biocarrier increased the bacterial population to 108 cells g?1 dry soil and total microbial activity to 3.5 A490. A hypothesis model was proposed to explain the mechanism: the biocarrier improved the oxygen, nutrient mass transfer and water holding capacity of the soil, which were the limiting factors for biodegradation of non-aqueous phase liquid (NAPL) contaminants such as crude oil in soil.Scientific relevanceThis study explored the role of biocarrier in enhancing biodegradation of hydrophobic contaminants such as crude oil, and discussed the function of biocarrier in improving oxygen mass transfer and soil water holding capacity, etc.  相似文献   

13.
Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop® system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR–DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day?1 for temperate and 0.068 day?1 for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.  相似文献   

14.
Towards efficient crude oil degradation by a mixed bacterial consortium   总被引:18,自引:0,他引:18  
A laboratory study was undertaken to assess the optimal conditions for biodegradation of Bombay High (BH) crude oil. Among 130 oil degrading bacterial cultures isolated from oil contaminated soil samples, Micrococcus sp. GS2-22, Corynebacterium sp. GS5-66, Flavobacterium sp. DS5-73, Bacillus sp. DS6-86 and Pseudomonas sp. DS10-129 were selected for the study based on the efficiency of crude oil utilisation. A mixed bacterial consortium prepared using the above strains was also used. Individual bacterial cultures showed less growth and degradation than did the mixed bacterial consortium. At 1% crude oil concentration, the mixed bacterial consortium degraded a maximum of 78% of BH crude oil. This was followed by 66% by Pseudomonas sp. DS10-129, 59% by Bacillus sp. DS6-86, 49% by Micrococcus sp. GS2-22, 43% by Corynebacterium sp. GS5-66 and 41% by Flavobacterium sp. DS5-73. The percentage of degradation by the mixed bacterial consortium decreased from 78% to 52% as the concentration of crude oil was increased from 1% to 10%. Temperature of 30 degrees C and pH 7.5 were found to be optima for maximum biodegradation.  相似文献   

15.
The hydrocarbon-oxidizing potential of soil microbiota and hydrocarbon-oxidizing microorganisms introduced into soil was studied based on the quantitative and isotopic characteristics of carbon in products formed in microbial degradation of oil hydrocarbons. Comparison of CO2 production rates in native soil and that polluted with crude oil showed the intensity of microbial mineralization of soil organic matter (SOM) in the presence of oil hydrocarbons to be higher as compared with non-polluted soil, that is, revealed a priming effect ofoil. The amount of carbon of newly synthesized organic products (cell biomass and exometabolites) due to consumed petroleum was shown to significantly exceed that of SOM consumed for production of CO2. The result of microbial processes in oil-polluted soil was found to be a potent release of carbon dioxide to the atmosphere.  相似文献   

16.
In this study biodegradation of hydrocarbons in thin oil films was investigated in seawater at low temperatures, 0 and 5 °C. Heterotrophic (HM) or oil-degrading (ODM) microorganisms enriched at the two temperatures showed 16S rRNA sequence similarities to several bacteria of Arctic or Antarctic origin. Biodegradation experiments were conducted with a crude mineral oil immobilized as thin films on hydrophobic Fluortex adsorbents in nutrient-enriched or sterile seawater. Chemical and respirometric analysis of hydrocarbon depletion showed that naphthalene and other small aromatic hydrocarbons (HCs) were primarily biodegraded after dissolution to the water phase, while biodegradation of larger polyaromatic hydrocarbons (PAH) and C10–C36 n-alkanes, including n-hexadecane, was associated primarily with the oil films. Biodegradation of PAH and n-alkanes was significant at both 0 and 5°C, but was decreased for several compounds at the lower temperature. n-Hexadecane biodegradation at the two temperatures was comparable at the end of the experiments, but was delayed at 0°C. Investigations of bacterial communities in seawater and on adsorbents by PCR amplification of 16S rRNA gene fragments and DGGE analysis indicated that predominant bacteria in the seawater gradually adhered to the oil-coated adsorbents during biodegradation at both temperatures. Sequence analysis of most DGGE bands aligned to members of the phyla Proteobacteria (Gammaproteobacteria) or Bacteroidetes. Most sequences from experiments at 0°C revealed affiliations to members of Arctic or Antarctic consortia, while no such homology was detected for sequences from degradation experiment run at 5°C. In conclusion, marine microbial communities from cold seawater have potentials for oil film HC degradation at temperatures ≤5°C, and psychrotrophic or psychrophilic bacteria may play an important role during oil HC biodegradation in seawater close to freezing point.  相似文献   

17.
A microbial consortium capable of mineralizing asphaltenes was obtained from the Maya crude oil. The enrichment system was built with a glass column reactor containing mineral medium supplied with asphaltenes as energy and carbon source. The consortium growth was evaluated in Casoy agar during 40 weeks. The steady-state phase of the enriched bacterial community was observed after 10 weeks when the culture reach 10(5) to 10(6) CFU ml(-1). The isolates belong to bacterial genus reported for degradation of other hydrocarbons and they were identified as Corynebacterium sp., Bacillus sp., Brevibacillus sp. and Staphylococcus sp. The bacterial consortium growth was evaluated by a viable counts during 14 days exposed to different aeration, temperature, salinity, and pH conditions. The ability of the consortium to mineralize asphaltenes was evaluated using the method of ISO 9439 in glass column reactors of 20 x 3.2 cm during 13 days. Temperatures of 55 degrees C and salinity of 1.8% were growth limiting. The respiration of the microbial consortium using asphaltenes as a sole carbon source (800 micromoles CO2 in 13 days) was significantly higher than those of the samples containing only the microbial consortium (200 micromoles CO2) or only asphaltenes (300 micromoles CO2). These results indicated the existence of asphaltenes-degradating microbes in the crude oil and confirmed that the consortium could mineralize asphaltenes in conditions of room temperature, salinity of 100 ppm, aeration of 1 l min(-1) and pH of 7.4.  相似文献   

18.
【背景】石油作为一类混杂有机化合物,一旦产生污染就会对人类和环境造成严重的危害。【目的】从新疆石油污染土壤中分离筛选石油降解菌,为石油污染土壤的生物修复提供数据支持及技术参考。【方法】以石油为唯一碳源,通过富集培养、筛选分离得到123株单菌,根据菌落形态挑选出30个不同形态菌株,通过16S rRNA基因序列确定其种属,构建系统发育树;通过原油降解实验筛选出高效石油降解菌,以芳香烃的标志化合物萘为唯一碳源筛选出高效降解菌株,并分别筛选可降解水杨酸、邻苯二酚的菌株。【结果】分离筛选出5株高效石油降解菌,降解率高于85%;萘、水杨酸和邻苯二酚降解菌株各获得一株,将3种菌株按照1:1:1的接种比例对萘进行降解,萘的降解率从单菌60.74%提升到89.40%,菌株间的分工协作可以提高有机物的降解效率。【结论】筛选得到的菌株丰富了石油降解微生物菌种库,不同微生物菌株之间的分工协作为石油污染物的降解提供了新思路,为进一步研究石油污染治理提供参考。  相似文献   

19.
Marine species with relatively low migratory capacity are threatened by habitat alterations derived from human activities. In November 2002 the tanker Prestige sank off the Spanish northwest coast releasing 70,000 tons of fuel and damaging biota in the area. Despite efforts to clean the damaged areas, fuel remnants have affected marine species over the last nine years. This study is focused on two flatfish, Lepidorhombus boscii (four-spotted megrim) and L. whiffiagonis (megrim), whose spawning areas are located at the edge of the continental platform. We have analyzed megrim samples from North Spanish and French waters obtained before and after the oil spill. Genotypes at the nuclear marker 5S rDNA indicate a significant increase in interspecific hybridization after the Prestige accident, likely due to forced spawning overlap. The mitochondrial D-Loop region was employed for determining the direction of hybrid crosses, which were most frequently L. boscii female x L. whiffiagonis male. Reduced ability of L. boscii females to select conspecific mates would explain such asymmetric hybridization. To our knowledge this is the first time that increased hybridization between fish species can be associated to an oil spill. These results illustrate the potential long-term effect of petrol wastes on wild fish species.  相似文献   

20.
Biostimulation by nutrient enrichment and phytoremediation were studied for the restoration of an acutely stressed freshwater wetland experimentally exposed to crude oil. The research was carried out along the shores of the St. Lawarence River at Ste. Croix, Quebec, Canada. The research determined the effectiveness of fertilizer addition in enhancing the biodegradation rates of residual oil. It further examined the rate at which the stressed ecosystem recovered with and without the addition of inorganic fertilizers and the role of nutrients in enhancing wetland restoration in the absence of healthy wetland plants. Chemical analysis of integrated sediment core samples to the depth of oil penetration within the experimental plots indicated that addition of inorganic nutrients did not enhance the disappearance of alkanes or PAHs. In surface samples, however, hydrocarbon disappearance rates were higher when the metabolic activity of wetland plants was suppressed by the removal of emergent plant growth. These results suggest that oxygen limitation plays a major role in preventing rapid biodegradation of hydrocarbons in anoxic wetland sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号