首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A20.2J B lymphoma cells have been co-transfected with the A alpha b, A beta b or with the A alpha b, A beta bm12 and neomycin resistance genes. The transfected cell lines constitutively express the I-Ab or I-Abm12 class II molecules at a level comparable with that of the endogenous I-Ad antigen. The I-Ab antigens expressed on three independently transfected B cell clones (A20.Ab.1, A20.Ab.2, and A20.Ab.3) are serologically and functionally indistinguishable from the I-Ab molecules expressed by control H-2bxd B hybridoma cells (LB cells). These transfected cell lines were potent I region-restricted antigen-presenting cells to a large panel of antigen-specific, autoreactive and alloreactive T cell hybridomas, as well as normal T cell clones. There were not significant differences in the efficiency of antigen presentation by the Ia molecules encoded by the transfected, as compared with the endogenous, I-A genes. The expression of a functional I-Ab antigen on the surface of cells transfected with A beta bm12 and A alpha b genes is consistent with previous work that implicated the A beta-chain alone in the bm 12 mutation. Furthermore, because the transfected A20.Ab and A20.Abm12 cells display the serologic and functional properties of normal spleen cells from the wild-type and mutant mouse strains, respectively, it is clear that class II genes do not undergo unexpected and unpredictable alterations after transfection in this system. This system permits us to investigate the structural requirements for interactions between class II major histocompatibility complex antigens, a foreign antigen, and the T cell receptor by in vitro site-directed mutagenesis coupled with DNA-mediated gene transfer.  相似文献   

2.
3.
We have continued our investigations of line lung carcinoma cells to understand the molecular basis of decreased expression of class I H-2 Ag and class I Ag induction with DMSO. We show that line 1, a murine lung carcinoma cell line, has low levels of class I Ag (H-2K, D, and L) because it is deficient in both class I and beta 2-microglobulin (B2M) RNA, and that these mRNA can be coordinately induced with DMSO. Evidence presented herein also shows that IFN-gamma can induce surface expression of class I Ag and suggests that it may act through a different mechanism than DMSO in inducing class I Ag. To further evaluate the regulation of class I expression, H-2Dp genes were transfected into line 1 cells. The transfected H-2 genes appear to be constitutively expressed at much higher levels than are the endogenous class I genes because surface expression of the foreign Dp Ag on the transfectants is elevated relative to the endogenous H-2d haplotype class I Ag. Both Dp surface expression and Dp mRNA are induced after treatment with DMSO. In all the Dp transfectants, we observed higher constitutive levels of class I mRNA as well as increased constitutive levels of endogenous B2M mRNA when compared to control or untransfected line 1 cells, however, we could not correlate these constitutive levels with Dp copy number. These results suggest that the regulation of class I and B2M genes is linked and that expression of class I genes can affect the expression of B2M genes.  相似文献   

4.
The HLA-DR2 restriction of the T cell response to myelin basic protein (MBP) was studied using murine L cells transfected with DRalpha and either DR2a or DR2b beta-chain cDNA. DR2a and DR2b represent the two isotypic DRbeta chains expressed in DR2Dw2 haplotypes. Eleven MBP-specific cytolytic T cell lines derived from patients with multiple sclerosis were isolated. Two of these cell lines recognized MBP-pulsed DR2-expressing L cell transfectants and four of them could only recognize the L cells if the adhesion molecule ICAM-1 was expressed in addition to HLA-DR2. Five of the six lines were restricted by HLA-DR2a; one line recognized Ag in conjunction with DR2b, but only if ICAM-1 was coexpressed. The remaining five lines did not lyse MBP-pulsed L cells. The ability of the DR2b molecules on transfected cells to stimulate T cells was confirmed with DR2b-allospecific T cell clones. Although five MBP-specific lines were restricted by DR2a, they recognized different parts of the MBP molecule, as demonstrated by the presentation of shorter peptides. Thus, our results suggest that DR2a is a dominant restriction molecule in MBP-specific responses by DR2+ MS patients. The results also indicate that the reported heterogeneity in MBP epitopes recognized by DR2-restricted T cells, may not be due to the use of different restriction elements but rather to the binding of different MBP peptides to DR2a molecules.  相似文献   

5.
A gene encoding the H chain of the human class I MHC Ag HLA-B27 was introduced into the germ lines of inbred C57BL/6 (B6) and non-inbred (B6 X SJL/J) F2 mice. By immunofluorescence and flow cytometry, the HLA-B27 gene product was expressed on lymphoid cells at levels comparable to the endogenous H-2b and H-2s class I MHC molecules. In both primary and secondary MLC between responder spleen cells from non-transgenic (B6 X SJL/J) F1 mice and transgenic stimulator cells, CTL were generated that specifically lysed mouse L cell (H-2k) or human B cell targets expressing HLA-B27, and this lysis thus appeared largely unrestricted by H-2. These results indicate that transgenic mice express a functional HLA-B27 gene product on cell surfaces in the absence of the human beta 2-microglobulin gene. These transgenic mice promise to be a valuable resource in the investigation of the unique role of HLA-B27 in inflammatory human disease.  相似文献   

6.
Structural relationships among the H-2 D-regions of murine MHC haplotypes   总被引:5,自引:0,他引:5  
The number of genes encoding functional Ag-presenting molecules in the D region of the murine MHC differs among haplotypes. For example, the H-2b D region contains a single "D/L" gene, H-2Db, whereas the d-haplotype encodes two, H-2Dd and Ld. Using D/L specific oligonucleotide probes, we have found that, as with H-2d, the q- and v-haplotypes contain two D/L genes, whereas the other haplotype examined have one. Hybridization analysis using cloned probes that map between H-2Dd and Ld revealed similar structures in each of the three haplotypes (d, q, and v) which have "duplicated" D regions. Two approaches were used to examine allelic relationships among the D/L genes. First, the 5' region of the H-2Db gene was sequenced, and found to be more similar to H-2Ld than to H-2Dd. Second, oligonucleotide probes that distinguish H-2Ld from H-2Dd revealed H-2Ld-related genes in several haplotypes, including the duplicated haplotypes H-2q and H-2v. Analogous probes specific for H-2Dd, however, did not detect similar sequences in the other haplotypes. We interpret these results to mean that the three duplicated D regions arose from a common duplication event, and share the five gene structure of the D region cluster defined in H-2d. However, subsequent events have generated sequence divergence at the D-locus.  相似文献   

7.
A self-reactive T cell hybridoma that secretes IL-2 in response to H-2d haplotype cells resulted from a fusion of BALB/cBy lymph node cells with the AKR thymoma BW5147. The lymph node cells used had been enriched for cells reactive to (TG)-A--L, but neither this antigen nor fetal calf serum were required for stimulation of the hybridoma designated 3DT52.5. The gene product responsible for stimulation mapped to the H-2D region. Allogeneic cells of the b, f, k, q, and s haplotypes failed to stimulate. Not all H-2d haplotype cells were effective stimulators of 3DT52.5. Peritoneal cells and splenic B cells were much more stimulatory than splenic T cells. Most tumor cell lines of H-2d derivation and of B cell or macrophage/monocyte lineage were stimulatory, whereas H-2d T cell lines were not. The capacity to stimulate 3DT52.5 did not correlate with the ability to stimulate I region-restricted hybridomas, or with the ability to be induced to stimulate such hybridomas. Stimulatory cell lines did not apparently produce a soluble factor required for stimulation, and negative cell lines were not inhibitory. The monoclonal antibody 27-11-13, which reacts with H-2D of the b, d, and q haplotypes, inhibited stimulation of 3DT52.5 but did not inhibit stimulation of the sibling hybridoma 3DT18.11, which responds to (TG)-A--L plus I-Ad. Conversely, the monoclonal anti-I-Ad antibody MK-D6 inhibited stimulation of 3DT18.11 but not 3DT52.5. Although it is clear that 3DT52.5 recognizes a class I antigen coded for in the H-2D region, the precise molecular nature of the antigen is unknown. The structure of the antigen receptor on this hybridoma may prove to be of interest when it can be compared with receptors found on T cell hybridomas restricted by class II histocompatibility antigens.  相似文献   

8.
The structure-function relationship of individual coding regions of class I mouse major histocompatibility complex proteins was studied by a combination of recombinant DNA, gene transfer techniques, and serologic and functional characterization. To examine the role of alpha 1 and alpha 2 regions in antibody and CTL recognition, the third exon of H-2Dd, Kd, and Ld transplantation antigen genes was replaced by the homologous coding region of the Qa-2-coded class I gene, Q6. We have chosen to carry out the exon shuffling experiments between these two different types of class I genes, because they are structurally similar and did not evolve to carry out identical functions. Therefore, it is less likely that the hybrid proteins will fortuitously recreate alpha 1-alpha 2 controlled functionally important determinants. The replacement of H-2 alpha 2 coding region with its Q6 counterpart had different effects on the expression of the three genes. The mutant H-2Dd gene transfected into L cells was expressed at high levels and retained several of the serologic determinants found on parental H-2Dd and Q6 domains. The serologic epitopes on the mutant H-2Kd-transfected cells were detectable at very low levels, whereas the product of the mutant H-2Ld gene could not be identified at all. Analysis of cells transfected with mutant H-2Dd gene with alloreactive and minor antigen(s)-restricted cytotoxic T cells indicated that the hybrid proteins lost the ability to be recognized by T cells. Our data suggest that cytotoxic T cells recognize conformational determinants composed of amino acids from alpha 1 and alpha 2 regions. Alternatively, it could be proposed that T cell recognition sites located in a single alpha 1 or alpha 2 protein region are susceptible to distortion upon alpha 1-alpha 2 interactions. Such susceptibility to conformational changes of the amino-terminal domain of transplantation antigens could be of functional importance for H-2-restricted antigen presentation.  相似文献   

9.
Monospecific T cell clones have been proven to be powerful tools for the characterization of T cell recognition in many Ag-specific as well as allo-specific T cell responses. In this report, in order to elucidate the mechanism of T cell recognition of minor stimulating locus Ag (Mlsc) determinants, Mlsc-specific cloned T cells were employed together with primary T cell responses to clarify the role of MHC-gene products in Mlsc-specific T cell recognition. The results indicated that T cells recognize Mlsc determinants in conjunction with I-region MHC gene products. Moreover, certain MHC haplotypes (e.g., H-2a and H-2k) appear to function efficiently in the "presentation" of Mlsc, whereas other haplotypes (e.g., H-2b and H-2q) function poorly if at all in presenting Mlsc. Experiments with the use of stimulators derived from F1 hybrids between the low stimulatory H-2b, Mlsc strain, C3H.SW, and a panel of Mlsb, H-2-different or intra-H-2 recombinant strains strongly suggested that expression of E alpha E beta molecules on stimulators plays a critical role for Mlsc stimulation. The functional importance of the E alpha E beta product in Mlsc recognition was further demonstrated by the ability of anti-E alpha monoclonal antibody to inhibit the response of cloned Mlsc-specific T cells. Inhibition of the same Mlsc-specific response by anti-A beta k antibody suggests that the A beta product may also play a role in T cell responses to Mlsc.  相似文献   

10.
Recent reports suggested a correlation between decreased expression of tumor cell MHC class I Ag and increased susceptibility to NK cells. These studies led to the hypothesis that tumor cells displaying reduced levels of MHC class I Ag have reduced tumorigenicity in vivo because they are eliminated from the host by endogenous NK cells. The present studies use the murine hepatoma BW7756 and a spontaneous H-2Kb loss variant, Hepa-1, to test this hypothesis. The parental BW7756 tumor is highly malignant in syngeneic C57L/J hosts while Hepa-1 cells do not give rise to tumors, suggesting that the loss of H-2Kb Ag expression correlates with decreased tumorigenicity and NK susceptibility. Hepa-1 cells were therefore transfected with an H-2Kb gene to generate H-2Kb Ag expressing clones. The resulting clones were tested for tumorigenicity. Syngeneic or NK-deficient C57BL/6-beige/beige mice challenged with Hepa-1 or the H-2Kb transfectants rejected the cells, suggesting that reexpression of H-2Kb Ag does not restore tumorigenicity and that NK cells are not involved in Hepa-1 rejection. In vitro H-2Kb Ag-negative and -positive Hepa-1 cells are equally susceptible to tilorone-boosted NK cells, indicating that MHC class I Ag expression also does not affect in vitro NK susceptibility. Tumor challenged athymic nude and sublethally irradiated syngeneic mice develop tumors demonstrating that T cells are probably responsible for rejection of the Hepa-1 tumor, and that H-2Kb Ag expression has no effect on rejection. Inasmuch as the expression of H-2Kb Ag on Hepa-1 cells does not effect tumorigenicity or in vitro NK susceptibility, the previously reported association between reduced MHC class I Ag levels and increased NK susceptibility is not universally applicable.  相似文献   

11.
Mice immunized with syngeneic cells transfected with cloned genes coding for HLA class I molecules could recognize the human MHC Ag in the context of their own H-2 molecules. We obtained CTL clones from DBA/2 mice (H-2d) which had been immunized with P815 cells (a mastocytoma of DBA/2 origin) expressing either HLA-A2 or HLA-A3 or two different molecules containing recombined sequences of HLA-A2 and HLA-A3. Fourteen of these clones recognized a synthetic peptide corresponding to the region 170-185 of HLA-A2 in the context of H-2Kd. Moreover, from their activity on P815 cells expressing HLA-Cw3, two subpatterns could be distinguished: subpattern Cw3+, defined by those clones which lysed P815-Cw3, and subpattern Cw3- defined by those clones which did not lyse P815-Cw3. By testing the activity of clones of each subpattern on a series of modified synthetic peptides, we were able to define two epitopes on the same 170-185 peptide of HLA-A2. One of them was dependent on amino acids at positions 173 and 177, whereas the other was dependent on amino acid 177 alone. By using competition experiments, we were also able to define an agretopic region strongly dependent on the amino acid at position 178. Furthermore, experiments with L cells expressing molecules containing recombined sequences between H-2Kd and H-2Dd demonstrated the determinant role of residues 152, 155, and 156 from H-2Kd in the presentation to murine T cells of the 170-185 peptide of HLA-A2.  相似文献   

12.
Con A splenic lymphoblasts were incubated with phosphatidyl-inositol specific phospholipase C (PIPLC) derived from Bacillus thuringiensis and subsequently analyzed for Qa-2 Ag with the Qa-2 reactive mAb Qa-m2. This treatment completely removed Qa-2 detectable Ag on lymphoblasts from H-2d animals, indicating that these molecules are likely anchored to the cell membrane through phosphatidyl inositol (PI). Although exposure of lymphoblasts from H-2b mice to PIPLC greatly reduced Qa-2 expression, a subpopulation of cells retained a limited quantity of the Ag. Bulk cultured anti-Qa-2 CTL generated against the Qa-2 region from H-2b haplotype mice lysed Qa-2+ targets from B6.K2 (H-2b) and BALB/cJ (H-2d) animals. Pretreatment of these lymphoblast targets with PIPLC completely abolished lysis of the BALB/cJ target cells, whereas lysis of B6 targets was reduced only slightly. Anti-Qa-2 CTL clones tested against PIPLC-treated B6 target cells revealed two patterns of reactivity. One group of clones was unaffected in its ability to lyse PIPLC-pretreated targets and cross-reacted on Q6d/Ld molecules expressed on transfected L cells. A second group was unable to lyse PIPLC-pretreated lymphoblasts and cross-reacted on Q7d/Ld targets. These data suggest that H-2b-derived lymphoblasts express two different types of Qa-2 molecules with respect to PIPLC sensitivity; one type is sensitive to PIPLC and cross-reactive with Q7d, the other type is resistant to PIPLC and cross-reactive with Q6d. In contrast, H-2d lymphoblasts express only the PIPLC-sensitive type of molecules. It was also noted that bulk cultured anti-Qa-2 CTL more readily lysed H-2b target cells expressing a smaller quantity of PIPLC-resistant Ag than H-2d targets expressing a larger amount of PIPLC-sensitive Ag. Further, anti-Qa-2 CTL clones readily lysed PIPLC-treated target cells expressing very low levels of serologically detectable Qa-2. This suggests that recognition of class I molecules anchored to the membrane via a PIPLC-resistant linkage may more readily activate CTL for expression of lytic activity than molecules anchored through PI.  相似文献   

13.
Molecular cloning of bovine class I MHC cDNA   总被引:13,自引:0,他引:13  
Two cDNA cloned from a Hereford cow B cell line (BL-3) have allowed the determination of the complete coding region for two class I molecules encoded by the bovine MHC (BoLA). The predicted protein sequences have all the features expected of expressed class I molecules that present peptide Ag to cytotoxic T cells. Comparison with class I molecules from other species strongly suggests these cDNA are derived from different genes and provides evidence for the existence of a second expressed class I BoLA locus. The BoLA proteins show greater similarity to HLA than to H-2 molecules, correlating with the cross-reactions of W6/32 and other murine anti-HLA-A,B,C mAb with BoLA molecules. The basis for the W6/32 epitope and the preferential association of H-2 class I H chains with bovine beta 2-m is examined.  相似文献   

14.
MHC class I expression by rats of the RT1(o), RT1(d), and RT1(m) MHC haplotypes was investigated. Identical, functional cDNAs were obtained from RT1(o) and BDIX (RT1(dv1)) rats for three MHC class I molecules. RT1-A1(o/d) and -A2(o/d) are closely related in sequence to other cloned rat class Ia genes that have been shown to map to the RT1-A region, while RT1-A3 degrees is highly homologous to a class I gene identified by sequencing an RT1-A(n) genomic contig and is named A3(n). Detailed analysis of the three molecules was undertaken using serology with mAbs, two-dimensional gel analysis of immunoprecipitates, and killing assays using cytotoxic T cells. Arguments are presented suggesting that A1 degrees is the principal MHC class Ia (classical) restricting element of this haplotype. A2 degrees, which is highly cross-reactive with A1 degrees, and A3 degrees probably play more minor or distinct roles in Ag presentation. Unexpectedly, cDNAs encoding exactly the same three molecules were cloned from rats of the RT1(m) haplotype, an MHC that until now was thought to possess unique class Ia genes. RT1(m) contains the TAP-B allele of the TAP transporter, and we present evidence that functional polymorphism in rat TAP has an even greater impact on the expression of RT1-A1 degrees and -A2 degrees than it does on RT1-A(a) in the established case of class I modification (cim). Historically, this led to the misclassification of RT1(m) class Ia molecules as separate and distinct.  相似文献   

15.
SV40-transformed cells of C57BL/6 (B6) mouse origin (H-2b) express four distinct predominant antigenic sites, I, II, III, and IV, on SV40 large tumor (T) Ag that are recognized by SV40 T Ag-specific CTL clones. In this study, we selected SV40 T Ag-positive cell lines which had lost one or more of the antigenic sites, by in vitro cocultivation of a SV40-transformed B6 mouse kidney cell line (K-0) with SV40 T Ag site-specific CTL clones, Y-1 (site I specific), Y-2 (site II specific), Y-3 (site III specific), and Y-4 (site IV specific). All of the CTL-resistant cell lines expressed large quantities of cell surface H-2 class I Ag. K-1 cells selected by CTL clone Y-1 lost the expression of antigenic sites I, II, and III, but not site IV. K-2 and K-3 cells selected by CTL clones Y-2 and Y-3, respectively, were found to be negative for sites II and III but expressed sites I and IV. K-4 cells selected by CTL clone Y-4 lost the expression of only site IV. K-1,4 cells (sites I-, II-, III-, IV-) were selected from K-1 cells by cocultivation with CTL clone Y-4, K-2,4 cells (sites I+, II-, III-, IV-) were selected from K-2 cells by CTL clone Y-4. K-3,1 cells (sites I-, II-, III-, IV+) were selected from K-3 cells by CTL clone Y-1, and K-3,1,4 cells (sites I-, II-, III-, IV-) were selected from K-3,1 cells by CTL clone Y-4. From K-4 cells, K-4,1 cells (sites I-, II-, III-, IV-) and K-4,3 cells (sites I+, II-, III-, IV-) were selected by CTL clone Y-1 and Y-3, respectively. The antigenic site loss variant cell lines K-1, K-1,4, K-3,1 K-3,1,4, K-4,1, and K-4,3 synthesized SV40 T Ag molecules of 75, 75, 78, 78, 81, and 88 kDa, respectively. Expression of wild-type SV40 T Ag in the antigenic site loss variants by infection with SV40 or transfection with cloned SV40 DNA restored the CTL recognition sites on the variant cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The epitope corresponding to amino acid residues 147-161 of the nucleoprotein (NP) of influenza A virus is recognized by CTL in association with H-2Kd class I Ag. Herein, we engineered an Ig molecule carrying this CTL epitope by replacing the diversity gene segment of the H chain V region of an anti-arsonate antibody with an oligonucleotide that encodes the CTL epitope. The chimeric H chain gene was expressed either alone or together with the parental L chain in the nonsecreting BALB/c myeloma B cell line, SP2/0. The Ig produced by cells transfected with both the chimeric H chain and parental L chains genes expressed the NP epitope but lost the original arsonate binding activity. In addition, SP2/0 cells expressing the chimeric H chain either alone or together with the parental L chain were lysed by class I restricted NP-epitope specific CTL. By contrast, SP2/0 cells pulsed with soluble chimeric Ig molecules were not lysed by the specific CTL. These observations indicate that: 1) this particular CTL epitope can be expressed on Ig molecules without altering the H and L chain pairing; 2) this CTL epitope can be generated from this chimeric Ig in which it is surrounded by flanking regions distinct from those of the viral NP; and 3) the generation of this CTL epitope from the Ig molecule requires the endogenous pathway as do viral proteins.  相似文献   

17.
Mammalian cells express up to six different MHC class I alleles, many of which differ in terms of their interaction with components of the Ag presentation pathway and level of cell surface expression. However, it is often assumed in Ag presentation studies that class I alleles function independently of each other. We have compared cell surface expression levels and function of MHC class I molecules in F(1) hybrid mice with those in the homozygous parental strains. The level of cell surface expression of certain alleles in F(1) mice differed significantly from 50% of that found on the same cell type in the corresponding parental strain, suggesting allele-specific competition for cell surface expression, and not expression solely according to gene dosage. The strongest effect was observed in H-2(b) x H-2(k) F(1) mice, in which the H-2(b) class I molecules dominated over the H-2(k) class I molecules. The magnitude of H-2(k)-restricted CTL responses to influenza A virus infection was similar in the F(1) hybrid and parental H-2(k) mice. However, in H-2(k) mice expressing a K(b) transgene, cell surface levels of the endogenous class I molecules were down-regulated to a greater degree than in F(1) hybrid mice, and H-2(k)-restricted CTL responses against influenza A virus were greatly reduced, although the CTL repertoire was apparently present. Therefore, certain MHC class I molecules compete with each other for cell surface expression, and the resulting low cell surface expression of specific alleles can lead to a severe reduction in the ability to generate a CTL response.  相似文献   

18.
To determine roles of MHC class I and II genes in protection against Toxoplasma gondii, H-2 congenic and mutant mice were infected perorally with bradyzoites of T. gondii and brain cysts were enumerated 30 days later. As B10 mice (H-2b) are cyst susceptible and B10.A mice (H-2a) are cyst resistant, B10 congenic mice having the same alleles but different H-2 haplotypes were used to locate the controlling gene. Genes located at H-2L (i.e., class I genes) were found to regulate the number of brain cysts which form following peroral infection with T. gondii (p less than 0.001) with Ld being resistant and Lb being susceptible. The regulatory function of the H-2L gene product was confirmed through the study of D mutant (dm) mice. B10.D2-H-2dm1 (dm1) mice have a gain-loss mutation in Dd and Ld (i.e., recombination of Ld and Dd) and BALB/c-H-2dm2 (dm2) mice have a deletion of the Ld gene. Both these dm strains were cyst susceptible (p less than 0.001). These results provide the first direct evidence that class I genes regulate numbers of T. gondii cysts that form. In vivo ablation of CD8+ T cells with mAb YTS 169.4 converted cyst resistant B10.BAR12 mice to cyst susceptible. This result is consistent with a role for MHC restricted CD8+ cytotoxic (or suppressor) T cell regulation of cyst formation. A mutation in Ia in B6.C-H-2bm12 (bm12) mice amplified cyst numbers in susceptible mice, which is consistent with the importance of helper/inducer T cells in the induction of cytotoxic T cells. These findings are relevant to understanding the complex immunologic mechanisms that protect against T. gondii infection, development of protective preparations, and provide a conceptual basis for determining whether similar immunogenetic regulation of susceptibility is also operative in humans.  相似文献   

19.
Previously we had shown that allospecific bulk cultures of cytolytic T lymphocytes lysed the products of cloned class I major histocompatibility genes expressed after DNA-mediated gene transfer. In these experiments, performed by using cloned allospecific T cell effectors, a T cell hybridoma, and recombinant DNA technology, we have been able to map determinants recognized by these T cell clones to the alpha-1 domain of H-2Dd and the alpha-2 domain of H-2Ld (four of eight clones). Target cells used were L cells (H-2k), expressing wild type or hybrid H-2 antigens of H-2d origin. Thus, for the first time determinants recognized by cloned T cells are found in the recombined alpha-1 and alpha-2 domains.  相似文献   

20.
Induction of the H-2 D antigen during B cell activation   总被引:1,自引:0,他引:1  
Mitogenic activation causes increased expression of class I Ag of the MHC in mouse B cells. The increased expression was seen in flow cytometry analysis for both K and D in k as well as d haplotypes. A more detailed molecular analysis was carried out for H-2Dd. Increased expression (10- to 20-fold) of the H-2 Dd gene was detected at both protein and messenger RNA levels, and the time course for the accumulation of H-2 Dd protein on the cell surface parallels the increase in the steady-state messenger RNA levels. The increase in H-2 Dd expression in small B cells stimulated with LPS is detectable after 10 h of culture. The present data provide molecular and serologic evidence about alterations in the expression of the H-2 Dd Ag, previously identified as a B cell activation antigen B7.2. Our results indicate a new significance for the function and regulation of the MHC during immune responses, and suggest that the class I molecules may serve some role in the B cell activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号