首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Intercellular junctions which are similar in ultrastructure and protein composition to typical desmosomes have so far only been found in epithelial cells and in heart tissue, specifically in the intercalated disks of cardiac myocytes and at cell boundaries between Purkinje fiber cells. In epithelial cells the cytoplasmic side of desmosomes, the 'desmosomal plaque', represents a specific attachment structure for the anchorage of intermediate filaments (IF) of the cytokeratin type. Cardiac myocytes do not contain cytokeratin filaments. In primary cultures of rat cardiac myocytes, we have examined by immunofluorescence and electron microscopy, using single and double label techniques, whether other types of IF are attached to the desmosomal plaques of the heart. Antibodies to desmoplakin, the major protein of the desmosomal plaque, have been used to label specifically the desmosomal plaques. It is shown that the desmoplakin-containing structures are often associated with IF stained by antibodies to desmin, i.e., the characteristic type of IF present in these cells. Like cytokeratin filaments in epithelial cells, desmin filaments attach laterally to the desmosomal plaque. They also remain attached to these plaques after endocytotic internalization of desmosomal domains by treatment of the cells with EGTA. These desmin filaments do not appear to attach to junctions of the fascia adherens type and to nexuses (gap junctions). These observations show that anchorage at desmosomal plaques is not restricted to IF of the cytokeratin type and that IF composed of either cytokeratin or desmin, specifically attach, in a lateral fashion, to desmoplakin-containing regions of the plasma membrane. We conclude that special domains exist in these two IF proteins that are involved in binding to the desmosomal plaque.  相似文献   

2.
In this study, we compared qualitative and quantitative changes in the lateral mobility of phospholipid molecules in the plasma membrane of intact cells under various conditions of specific interaction of integrins in the cell membrane with two extracellular matrix (ECM) components viz. fibronectin (FN) and laminin (LN). We found a strong and specific correlation between the lower lateral mobility of phosphatidylcholine (PC) and higher lateral mobility of phosphatidylethanolamine (PE) when cells were expressing high levels of alpha5beta1 integrin and thus were adherent and motile on FN. The interaction between PC and FN in alpha5 integrin expressing cells was aided by the strong affinity of alpha5 integrin to the FN matrix. Cholesterol was involved in regulating the lateral mobility of PC to a great extent and of PE to a lesser extent without affecting the overall microviscosity of the plasma membrane or the distribution of caveolin-marked domains. The distribution and mobility of PC and PE molecules in the lamellipodial regions differed from that in the rest of the membrane and also in the more motile and in the less motile cells. We propose that these differences in distribution of PC and PE in different regions of cell membrane and their respective lateral mobility are observed due to the specific interaction of PC molecules with FN molecules in the ECM. Our results outline a new role of integrin-matrix interactions in the regulation of membrane phospholipid behavior.  相似文献   

3.
During tissue invasion, Entamoeba histolytica trophozoites interact with endothelial cells and extracellular matrix (ECM) proteins such as fibronectin (FN), collagen, and laminin. It has been demonstrated that trophozoites interact with FN through a beta1 integrin-like FN receptor (beta 1EhFNR), activating tyrosine kinases. In order to characterize the signaling process triggered by the amoebic receptor, activation, and association of tyrosine kinases and structural proteins were determined. As a result of FN binding by the beta 1EhFNR, the receptor itself, FAK, and paxillin were phosphorylated in tyrosine. Co-immunoprecipitation experiments showed that a multimolecular signaling complex was formed by the amoebic FN receptor, FAK, paxillin, and vinculin. These results strongly suggest that a signaling pathway, similar to the one used in mammalian cells, is activated when E. histolytica trophozoites adhere to FN.  相似文献   

4.
Two types of ascites hepatoma cells, AH 66 and AH 130 FN, were treated with trypsin to observe the release of complex carbohydrates constituting the plasma membranes. From AH 66 cells, mucopolysaccharide (heparan sulfate) was preferentially released. From AH 130 FN cells, N-glycosidic glycopeptides were preferentially released whereas no mucopolysaccharide (chondroitin sulfate A) was released.  相似文献   

5.
K Weber  U Plessmann    W Ulrich 《The EMBO journal》1989,8(11):3221-3227
The giant body muscle cells of the nematode Ascaris lumbricoides show a complex three dimensional array of intermediate filaments (IFs). They contain two proteins, A (71 kd) and B (63 kd), which we now show are able to form homopolymeric filaments in vitro. The complete amino acid sequence of B and 80% of A have been determined. A and B are two homologous proteins with a 55% sequence identity over the rod and tail domains. Sequence comparisons with the only other invertebrate IF protein currently known (Helix pomatia) and with vertebrate IF proteins show that along the coiled-coil rod domain, sequence principles rather than actual sequences are conserved in evolution. Noticeable exceptions are the consensus sequences at the ends of the rod, which probably play a direct role in IF assembly. Like the Helix IF protein the nematode proteins have six extra heptads in the coil 1b segment. These are characteristic of nuclear lamins from vertebrates and invertebrates and are not found in vertebrate IF proteins. Unexpectedly the enhanced homology between lamins and invertebrate IF proteins continues in the tail domains, which in vertebrate IF proteins totally diverge. The sequence alignment necessitates the introduction of a 15 residue deletion in the tail domain of all three invertebrate IF proteins. Its location coincides with the position of the karyophilic signal sequence, which dictates nuclear entry of the lamins. The results provide the first molecular support for the speculation that nuclear lamins and cytoplasmic IF proteins arose in eukaryotic evolution from a common lamin-like predecessor.  相似文献   

6.
Summary In the bullfrog, the meninges surrounding the central nervous system include an arachnoid mater that contains layers of cells with abundant intermediate filaments (IFs) having unique organizational characteristics. This membrane contains an inner lamina of cells that resemble fibroblasts and an outer lamina of flattened cells that are almost filled with IFs. The IFs of the outer arachnoid are arranged in compact, arching bundles that lie parallel to the outer surface of the central nervous system. Thus, sections cut tangentially to the membrane reveal bending of filament bundles, whereas transverse sections do not. In some cells bordering the subdural space, bundles of filaments are organized into highly-ordered spiral arrays. Attachments to the numerous desmosomes and, apparently, to the nuclear envelope suggest anchoring of cytoplasmic structures by the IF system. Microtubules occur primarily near the plasma membrane and the nucleus. Numerous caveolae also are associated with the plasma membrane.The unusual abundance, organization, and cytoplasmic relations of IFs in the bullfrog arachnoid suggest that this membrane may serve as an important model for study of fundamental cytoskeletal relations and function.  相似文献   

7.
Hyaluronidase dissolves a component in the hamster zona pellucida   总被引:3,自引:0,他引:3  
Mammalian sperm must pass between cumulus cells and corona radiata cells before reaching the surface of the zona pellucida which surrounds the oocyte. The cumulus and corona radiata cells are separated from each other by an extracellular matrix (ECM) containing hyaluronic acid. The structure of this ECM and of the zona pellucida was investigated in the hamster oocyte-cumulus complex (OCC) using transmission electron microscopy (TEM) following processing in ruthenium red. When fixed in the presence of ruthenium red, the ECM of the OCC and the zona pellucida were well preserved and highly structured. The ECM between corona radiata cells was comprised of a network of granules and filaments which resembled hyaluronic acid containing matrices described in other systems. The outer one-third to one-half of the zona pellucida was porous; the ECM of the corona radiata extended into these pores. Bovine testicular hyaluronidase, Streptomyces hyaluronidase, and hamster sperm extracts containing hyaluronidase each dispersed the cumulus cells and most of the corona radiata cells. TEM examination revealed that brief (5-10 min) hyaluronidase treatment of OCCs removed the matrix filaments and caused clumping of the granules in both the corona radiata and zona pellucida. Longer hyaluronidase treatments (15-30 min) removed both filaments and granules. Our observations are consistent with the ideas that: 1) the ECM between corona radiata cells contains hyaluronic acid, and 2) hyaluronic acid is present in the outer one-third to one-half of the zona pellucida.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The pathological hallmark of the host response to Mycobacterium tuberculosis is the granuloma where T cells and macrophages interact with the extracellular matrix (ECM) to control the infection. Recruitment and retention of T cells within inflamed tissues depend on adhesion to the ECM. T cells use integrins to adhere to the ECM, and fibronectin (FN) is one of its major components. We have found that the major M. tuberculosis cell wall glycolipid, phosphatidylinositol mannoside (PIM), induces homotypic adhesion of human CD4+ T cells and T cell adhesion to immobilized FN. Treatment with EDTA and cytochalasin D prevented PIM-induced T cell adhesion. PIM-induced T cell adhesion to FN was blocked with mAbs against alpha5 integrin chain and with RGD-containing peptides. Alpha5beta1 (VLA-5) is one of two major FN receptors on T cells. PIM was found to bind directly to purified human VLA-5. Thus, PIM interacts directly with VLA-5 on CD4+ T lymphocytes, inducing activation of the integrin, and promoting adhesion to the ECM glycoprotein, FN. This is the first report of direct binding of a M. tuberculosis molecule to a receptor on human T cells resulting in a change in CD4+ T cell function.  相似文献   

9.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

10.
Extracellular matrix (ECM) molecules are highly variable in their composition and receptor recognition. Their ubiquitous expression profile has been linked to roles in cell growth, differentiation, and survival. Recent work has identified certain ECM molecules that serve as dynamic signal modulators, versus the more-recognized role of chronic modulation of signal transduction. In this study, we investigated the role that fibronectin (FN) plays in the dynamic modulation of transient receptor potential family V type 1 receptor (TRPV1) translocation to the plasma membrane in trigeminal ganglia (TG) sensory neurons. Confocal immunofluorescence analyses identify co-expression of the TRPV1 receptor with integrin subunits that bind FN. TG neurons cultured upon or treated with FN experienced a leftward shift in the EC50 of capsaicin-stimulated neuropeptide release. This FN-induced increase in TRPV1 sensitivity to activation is coupled by an increase in plasma membrane expression of TRPV1, as well as an increase in tyrosine phosphorylation of TRPV1 in TG neurons. Furthermore, TG neurons cultured on FN demonstrated an increase in capsaicin-mediated Ca2+ accumulation relative to neurons cultured on poly- d -lysine. Data presented from these studies indicate that FN stimulates tyrosine-phosphorylation-dependent translocation of the TRPV1 receptor to the plasma membrane, identifying FN as a critical component of the ECM capable of sensory neuron sensitization.  相似文献   

11.
本文采用细胞分级抽提结合整装细胞电镜制样技术,分别在两种昆虫细胞:斜纹夜蛾(SL)细胞;甜菜夜蛾(SE)细胞中显示了一个精细的中等纤维网络结构,纤维自胞核发出,排列错综复杂,其单丝清晰可见,直径约为8~10nm;间接免疫荧光染色结果表明角蛋白抗体在两种细胞中均能显示出清晰的荧光纤维网络,而且荧光纤维的分布有所不同;用角蛋白抗体对这两种细胞全蛋白进行免疫印迹实验,均可显示49KD,68KD的两个主要多肽条带,说明这两种昆虫细胞中等纤维的主要成分为角蛋白.  相似文献   

12.
Summary The surface of extracellular merozoites of P. knowlesi is covered with a coat 15–20 nm thick, made up of clusters of filaments standing erect on the plasma membrane. Filaments have stems 2 nm thick, the peripheral ends of which are complex, branching or ending in long trailing threads. Coat filaments occur on the surface of the parasite in regular rows at an early schizont stage, and persist until well after merozoite release. They are sensitive to trypsin and papain, and bind ethanolic phosphotungstate, indicating a proteinaceous nature. They are also removed by exposure to phosphate-buffered saline. Filaments bear negative charges, binding cationised ferritin throughout the depth of the coat and staining with ruthenium red. They cover the whole merozoite surface and mediate intercellular adhesion at distances of 15–150 nm, membrane to membrane. It is suggested that these filaments correspond to a major merozoite surface protein, and are important in the initial capture of red cells.  相似文献   

13.
Fibulin is a recently described extracellular matrix (ECM) and plasma glycoprotein (Argraves, W. S., Tran, H., Burgess, W. H., and Dickerson, K. (1990) J. Cell Biol. 111, 3155-3164). In this report, ligand affinity chromatography and solid-phase binding analyses were performed to determine which ECM protein(s) interact with fibulin. Fibulin-Sepharose bound two polypeptides of 240 and 100 kDa from the culture medium of metabolically radiolabeled fibroblasts. These two proteins were identified as fibronectin (FN) and fibulin, respectively, based on their electrophoretic behavior and reactivity with monoclonal antibodies. Consistent with the findings of affinity chromatography, fibulin bound to surfaces coated with FN (either plasma or cellular form) or fibulin but not with other ECM proteins, such as laminin, merosin, and types I and IV collagen. The binding of fibulin to solid-phase FN was estimated to have a Kd of 139 nM, whereas the Kd for self-interaction was 322 nM. Evaluation of proteolytic fragments from all regions of FN allowed a fibulin-binding site to be localized within a 23-kDa heparin-binding fragment containing type III repeats 13-14. Heparin did not compete for the interaction between fibulin and FN, suggesting that the binding sites for fibulin and heparin are distinct.  相似文献   

14.
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.  相似文献   

15.
The organization of intermediate-sized filaments (IF) of the cytokeratin type was studied in cultures of PtK2 cells in which typical IF structures are maintained during mitosis, using a monoclonal antibody (KG 8.13). This antibody reacts, in immunoblotting experiments, with the larger of the two major cytokeratin polypeptides present in these cells but, using standard immunofluorescence microscopy procedures, does not react with the cytokeratin filaments abundant in interphase cells, in striking contrast to various antisera and other monoclonal cytokeratin antibodies. In the same cell cultures, however, the antibody does react with cytokeratin filaments of mitotic and early postmitotic cells. The specific reaction with cytokeratin filaments of mitotic cells only is due to the exposure of the specific immunologic determinant in mitosis and its masking in interphase cells. Treatment of interphase cells with both Triton X-100 as well as with methanol and acetone alters the cytokeratin filaments and allows them to react with this monoclonal antibody. A similar unmasking was noted after treatment with buffer containing 2 M urea or low concentrations of trypsin. We conclude that the organization of cytokeratin, albeit still arranged in typical IF, is altered during mitosis of PtK2 cells.  相似文献   

16.
Proper growth and development require the orderly synthesis and deposition of individual components of the extracellular matrix (ECM) into well ordered networks. Once formed, the ECM maintains tissue structure and houses resident cells. One ECM component, (beta)ig-h3, is a highly conserved transforming growth factor-beta-inducible protein that has been hypothesized to function as a bifunctional linker between individual matrix components and resident cells. To gain insights into its physiological function, full-length (beta)ig-h3 protein was produced using a baculovirus expression system and purified under native conditions. Human fibroblasts attached and spread on (beta)ig-h3-coated plates and developed actin stress fibers. Purified (beta)ig-h3 binds fibronectin (FN) and type I collagen (Col I) but does not bind gelatin. Using defined fragments of FN, we localized the (beta)ig-h3 recognition region to the gelatin/collagen binding domain present in the N-terminal region of the FN molecule. Our results identify FN and Col I as two ligands of (beta)ig-h3 in the ECM.  相似文献   

17.
To identify structures involved in the translocation of the synaptic vesicles towards the presynaptic membrane, an ultrastructural study has been undertaken by means of (1) the E-PTA stain and (2) the HMM-labeling procedure. Using serial sections of E-PTA stained nervous tissue, especially those made in transversal and tangential planes, the geometric order of the presynaptic grid and of its constituents has been described in detail. It consisted of dense projections having the shape of small truncated pyramids cut parallel to their hexagonal bases which rested on the electron-lucent presynaptic membrane. The dense projections were arranged at the points of equilateral triangles. Around each dense projection, six asymmetric hexagonal holes were seen to be arrayed in an hexagonal pattern, forming thus the presynaptic sieve. From the spiny tops of the dense projections, which appeared as specialized structures of the dense material coating the inner surface of the plasma membrane at the level of the synaptic cleft, fine filaments, 40--60 A in diameter, radiated and formed a three-dimensional meshwork pervading the presynaptic bag. The dense cytoplasmic coating delineating the plasma membrane served as anchor points for these microfilaments. Upon incubation with rabbit skeletal muscle HMM the microfilaments underwent specific structural changes, consisting of: (1) a striking increase in diameter; (2) the association of periodic and polarized substructures with their surfaces. The synaptic vesicles and mitochondria were seen to be attached to the numerous HMM-decorated filaments or enmeshed in the network formed by these filaments. The actin-like filaments were anchored to the plasma membrane at many points and to the presynaptic dense projections. Following incubation in the buffer alone or in buffer HMM solutions containing Na+ pyrophosphate or ATP, no arrowheaded structures were observed. Thus, a network consisting of actin-like filaments was demonstrated in the presynaptic bag. Of particular interest was the structural relation of the actin-like filaments with the occasional, tapered myosin-like filaments. The role of the presynaptic actin-like network in the transport of synaptic vesicles towards the presynaptic membrane by a mechanism of chemomechanical transduction is discussed. In the postsynaptic dendrite or dendritic spine, a filamentous network was observed to be attached to the subsynaptic web by means of the E-PTA stain and of the HMM-labeling procedure. The occurrence of an actin-like meshwork in the postsynaptic region is suggested to produce changes in the macromolecular configuration of the postsynaptic membrane by a "mechanoenzyme" system similar to that described in the mitochondrial membrane.  相似文献   

18.
Whole-mount cell preparations of cultured rat 3Y1 cells were examined by stereo electron microscopy to identify the ultrastructural localization of concanavalin A (Con A) receptors in the plasma membrane, and to clarify the relationship between Con A receptors and cytoskeletal components. Well spread monolayer cells were extracted with saponin, briefly fixed, and then partially broken open with shearing force to facilitate the introduction of antibodies for identification of actin filaments. Stereo electron microscopy of such treated cells revealed a 3-dimensional image of filamentous structures such as fine filaments, microtubules (MT) and endoplasmic reticulum (ER) in the flattened areas of each cell. Just beneath the plasma membrane were meshworks of actin-containing fine filaments, as identified by an immunogold staining method. Microtubules and ER were observed to be either directly or indirectly associated with this meshwork. The broken open part of each cell exhibited a meshwork of filaments which were associated with the cytoplasmic surface of the plasma membrane. Some of the filaments were connected to the plasma membrane either by their ends or by their lateral surfaces. The localization of Con A receptors was examined by binding colloidal gold-labelled Con A to the surface of fixed, saponin-extracted cells. Virtually all gold particles bound externally at the same membrane sites where intracellular actin filaments attached internally. The observations strongly suggest that the distribution of Con A receptors was regulated by the underlying meshwork of actin filaments.  相似文献   

19.
The body muscle cells of the nematode Ascaris lumbricoides are characterized by massive amounts of intermediate filaments (IF). These occur in all three regions of this giant cell type. They traverse the cytoplasm of the balloon-like belly, which houses the nucleus, and occur as bundles in the arm-like extensions to the nerve. The organization of IF in the third region, the contractile fiber, was analyzed further by serial sections and three-dimensional reconstruction. IF bundles traverse the glycogen-rich lumina of the fiber and reach as baskets around the sarcomeres. Together with numerous dense bodies they form the Z-band-like arrangements. IF bundles reach the plasma membrane at hemidesmosome-like specializations often situated at deep membrane invaginations filled with a fibrillar component of the extracellular matrix. The ultrastructural appearance of IF bundles is connected to the contractional state of the sarcomeres. They appear straight in extended muscle but coil up upon contraction. In the pharynx massive IF bundles are oriented longitudinally. A second type of IF bundles follows the radially oriented sarcomeres. These reveal pronounced Z-band type structures with massive disks. IF surround the sarcomeres and seem to terminate at these disks. We discuss possible functions of the complex IF organization in body muscle and pharynx.  相似文献   

20.
Ausmees N  Kuhn JR  Jacobs-Wagner C 《Cell》2003,115(6):705-713
Various cell shapes are encountered in the prokaryotic world, but how they are achieved is poorly understood. Intermediate filaments (IFs) of the eukaryotic cytoskeleton play an important role in cell shape in higher organisms. No such filaments have been found in prokaryotes. Here, we describe a bacterial equivalent to IF proteins, named crescentin, whose cytoskeletal function is required for the vibrioid and helical shapes of Caulobacter crescentus. Without crescentin, the cells adopt a straight-rod morphology. Crescentin has characteristic features of IF proteins including the ability to assemble into filaments in vitro without energy or cofactor requirements. In vivo, crescentin forms a helical structure that colocalizes with the inner cell curvatures beneath the cytoplasmic membrane. We propose that IF-like filaments of crescentin assemble into a helical structure, which by applying its geometry to the cell, generates a vibrioid or helical cell shape depending on the length of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号