首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High levels of serum IgE are considered markers of parasite and helminth exposure. In addition, they are associated with allergic disorders, play a key role in anti-tumoral defence, and are crucial mediators of autoimmune diseases. Total IgE is a strongly heritable trait. In a genome-wide association study (GWAS), we tested 353,569 SNPs for association with serum IgE levels in 1,530 individuals from the population-based KORA S3/F3 study. Replication was performed in four independent population-based study samples (total n = 9,769 individuals). Functional variants in the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) on chromosome 1q23 (rs2251746 and rs2427837) were strongly associated with total IgE levels in all cohorts with P values of 1.85 x 10(-20) and 7.08 x 10(-19) in a combined analysis, and in a post-hoc analysis showed additional associations with allergic sensitization (P = 7.78 x 10(-4) and P = 1.95 x 10(-3)). The "top" SNP significantly influenced the cell surface expression of FCER1A on basophils, and genome-wide expression profiles indicated an interesting novel regulatory mechanism of FCER1A expression via GATA-2. Polymorphisms within the RAD50 gene on chromosome 5q31 were consistently associated with IgE levels (P values 6.28 x 10(-7)-4.46 x 10(-8)) and increased the risk for atopic eczema and asthma. Furthermore, STAT6 was confirmed as susceptibility locus modulating IgE levels. In this first GWAS on total IgE FCER1A was identified and replicated as new susceptibility locus at which common genetic variation influences serum IgE levels. In addition, variants within the RAD50 gene might represent additional factors within cytokine gene cluster on chromosome 5q31, emphasizing the need for further investigations in this intriguing region. Our data furthermore confirm association of STAT6 variation with serum IgE levels.  相似文献   

2.
Most of the previously reported loci for total immunoglobulin E (IgE) levels are related to Th2 cell-dependent pathways. We undertook a genome-wide association study (GWAS) to identify genetic loci responsible for IgE regulation. A total of 479,940 single nucleotide polymorphisms (SNPs) were tested for association with total serum IgE levels in 1180 Japanese adults. Fine-mapping with SNP imputation demonstrated 6 candidate regions: the PYHIN1/IFI16, MHC classes I and II, LEMD2, GRAMD1B, and chr13∶60576338 regions. Replication of these candidate loci in each region was assessed in 2 independent Japanese cohorts (n = 1110 and 1364, respectively). SNP rs3130941 in the HLA-C region was consistently associated with total IgE levels in 3 independent populations, and the meta-analysis yielded genome-wide significance (P = 1.07×10−10). Using our GWAS results, we also assessed the reproducibility of previously reported gene associations with total IgE levels. Nine of 32 candidate genes identified by a literature search were associated with total IgE levels after correction for multiple testing. Our findings demonstrate that SNPs in the HLA-C region are strongly associated with total serum IgE levels in the Japanese population and that some of the previously reported genetic associations are replicated across ethnic groups.  相似文献   

3.
4.
GCTA: a tool for genome-wide complex trait analysis   总被引:7,自引:0,他引:7  
For most human complex diseases and traits, SNPs identified by genome-wide association studies (GWAS) explain only a small fraction of the heritability. Here we report a user-friendly software tool called genome-wide complex trait analysis (GCTA), which was developed based on a method we recently developed to address the "missing heritability" problem. GCTA estimates the variance explained by all the SNPs on a chromosome or on the whole genome for a complex trait rather than testing the association of any particular SNP to the trait. We introduce GCTA's five main functions: data management, estimation of the genetic relationships from SNPs, mixed linear model analysis of variance explained by the SNPs, estimation of the linkage disequilibrium structure, and GWAS simulation. We focus on the function of estimating the variance explained by all the SNPs on the X chromosome and testing the hypotheses of dosage compensation. The GCTA software is a versatile tool to estimate and partition complex trait variation with large GWAS data sets.  相似文献   

5.
Prostate-specific antigen (PSA) is a commonly used cancer biomarker for prostate cancer, and is often included as part of routine physical examinations in China. Serum levels of PSA may be influenced by genetic factors as well as other factors. A genome-wide association study (GWAS) conducted in a European population successfully identified six genetic loci that were significantly associated with PSA level. In this study, we aimed to identify common genetic variants that are associated with serum level of PSA in a Chinese population. We also evaluated the effects of those variants by creating personalized PSA cutoff values. A two-stage GWAS of PSA level was performed among men age 20–69 years and self-reported cancer-free participants that underwent routine physical examinations at several hospitals in Guangxi Province, China. Single nucleotide polymorphisms (SNPs) significantly associated with PSA levels in the first stage of sample (N = 1,999) were confirmed in the second stage of sample (N = 1,496). Multivariate linear regression was used to assess the independent contribution of confirmed SNPs and known covariates, such as age, to the level of PSA. SNPs in three regions were significantly associated with levels of PSA in this two-stage GWAS, and had combined P values between 4.62 × 10?17 and 6.45 × 10?37. The three regions are located on 1q32.1 at SLC45A3, 10q11.23 at MSMB, and 19q13.33 at KLK3. The region 1q32.1 at SLC45A3 was identified as a novel locus. Genetic variants contributed significantly more to the variance of PSA level than known covariates such as age. Personalized cutoff values of serum PSA, calculated based on the inheritance of these associated SNPs, differ considerably among individuals. Identification of these genetic markers provides new insight into the molecular mechanisms of PSA. Taking individual variation into account, these genetic variants may improve the performance of PSA to predict prostate cancer.  相似文献   

6.
The BACH2 gene regulates B cell differentiation and function and has been reported to be a shared susceptibility gene for several autoimmune diseases. Our previous genome-wide association study (GWAS) indicated that several single nucleotide polymorphisms (SNPs) in the BACH2 gene are associated with Graves’ disease (GD) in the Chinese Han population; however, the association did not achieve genome-wide significance levels. Recently, this association of BACH2 with GD was confirmed in Caucasians in the UK population, but fine mapping in this region has not yet been reported. Here, we provide a refined analysis of a 331-kb region in the BACH2 gene, which harbors 359 SNPs, using GWAS data from 1,442 GD patients and 1,468 controls. The SNPs rs2474619 and rs9344996 were implied as the independent variants associated with GD by forward and two-locus logistic regression analysis. We genotyped eight out of 10 tagSNPs with P < 1 × 10?3 in 3,508 GD patients and 3,209 controls, the results also showed that rs2474619 was independently associated with GD in the combined population from GWAS and the second stage (P = 1.81 × 10?5). The rs2474619 and rs9344996 were further genotyped in the third stage cohorts, and rs2474619 showed evidence of association with GD at genome-wide significance levels in the combined population (P = 3.28 × 10?8, odds ratio = 1.13). The association of rs9344996 with GD can be explained by its linkage to rs2474619 in the combined population. Our study clearly demonstrated that BACH2 is a susceptibility gene for GD in the Chinese Han population and further supported rs2474619, in intron 2 of BACH2, is the best association signal with GD. However, the mechanism by which BACH2 confers increased risk of GD requires further study.  相似文献   

7.
Chicken body weight (BW) is an economically important trait, and many studies have been conducted on genetic selection for BW. However, previous studies have detected functional chromosome mutations or regions using gene chips. The present study used the specific-locus amplified fragment sequencing (SLAF-seq) technology to perform a genome-wide association study (GWAS) on purebred Wengshang Barred chicken. A total of 1,286,715 single-nucleotide polymorphisms (SNPs) were detected, and 175,211 SNPs were selected as candidate SNPs for genome-wide association analysis using TASSEL general linear models. Six SNP markers reached genome-wide significance. Of these, rs732048524, rs735522839, rs738991545, and rs15837818 were significantly associated with body weight at 28 days (BW28), while rs314086457 and rs315694878 were significantly associated with BW120. These SNPs are close to seven genes (PRSS23, ME3, FAM181B, NABP1, SDPR, TSSK6L2, and RBBP8). Moreover, 24 BW-associated SNPs reached “suggestive” genome-wide significance. Of these, 6, 13, 1, and 4 SNPs were associated with BW28, BW56, BW80, and BW120, respectively. These results would enrich the studies on BW and promote the use of Chinese chicken, especially the Wenshang Barred chicken.  相似文献   

8.
Only a small proportion of genetic variation in serum ferritin has been explained by variant genetic studies, and genome-wide association study (GWAS) for serum ferritin has not been investigated widely in Chinese population. We aimed at exploring the novel genetic susceptibility to serum ferritin, and performed this two stage GWAS in a healthy Chinese population of 3,495 men aged 20–69 y, including 1,999 unrelated subjects in the first stage and 1,496 independent individuals in the second stage. Serum ferritin was measured with electrochemiluminescence immunoassay, and DNA samples were collected for genotyping. A total of 1,940,243 SNPs were tested by using multivariate linear regression analysis. After adjusting for population stratification, age and BMI, the rs5742933 located in the 5′UTR region of PMS1 gene on chromosome 2 was the most significantly associated with ferritin concentrations (P-combined = 2.329×10−10) (β = −0.11, 95% CI: −0.14, −0.07). Moreover, this marker was about 200kb away from the candidate gene SLC40A1 which is responsible for iron export. PMS1 gene was the novel genetic susceptibility to serum ferritin in Chinese males and its relation to SLC40A1 needs further study.  相似文献   

9.
Complement C3 and C4 play key roles in the main physiological activities of complement system, and their deficiencies or over-expression are associated with many clinical infectious or immunity diseases. A two-stage genome-wide association study (GWAS) was performed for serum levels of C3 and C4. The first stage was conducted in 1,999 healthy Chinese men, and the second stage was performed in an additional 1,496 subjects. We identified two SNPs, rs3753394 in CFH gene and rs3745567 in C3 gene, that are significantly associated with serum C3 levels at a genome-wide significance level (P = 7.33×10−11 and P = 1.83×10−9, respectively). For C4, one large genomic region on chromosome 6p21.3 is significantly associated with serum C4 levels. Two SNPs (rs1052693 and rs11575839) were located in the MHC class I area that include HLA-A, HLA-C, and HLA-B genes. Two SNPs (rs2075799 and rs2857009) were located 5′ and 3′ of C4 gene. The other four SNPs, rs2071278, rs3763317, rs9276606, and rs241428, were located in the MHC class II region that includes HLA-DRA, HLA-DRB, and HLA-DQB genes. The combined P-values for those eight SNPs ranged from 3.19×10−22 to 5.62×10−97. HBsAg-positive subjects have significantly lower C3 and C4 protein concentrations compared with HBsAg-negative subjects (P<0.05). Our study is the first GWAS report which shows genetic components influence the levels of complement C3 and C4. Our significant findings provide novel insights of their related autoimmune, infectious diseases, and molecular mechanisms.  相似文献   

10.
Zhang Y  Duan S  Lin X  Zhang W  Meng N  Zhao L  Zhao Y  Han D  Zhang L 《PloS one》2010,5(12):e15792

Background

Immunoglobulin E (IgE) is a central player in the allergic response, and raised total IgE levels are considered as an indicator of atopy or potential development of atopy. A recent genome-wide scan in a German population-based cohort of adults identified the gene encoding the alpha chain of the high affinity receptor for IgE (FCER1A) as a susceptibility locus influencing total serum IgE levels. The aim of this study was to investigate whether the polymorphisms in the FCER1A gene are associated with allergic rhinitis (AR) in a Han Chinese population.

Methodology/Principal Findings

A population of 378 patients with AR and 288 healthy controls was studied. Precise phenotyping of patients was accomplished by means of a questionnaire and clinical examination. Blood was drawn for DNA extraction and total serum immunoglobulin E (IgE) measurement. A total of 16 single nucleotide polymorphisms (SNPs) in FCER1A were selected and individually genotyped. None of the SNPs in the FCER1A showed an association with AR. Similarly, the lack of association was also evident in subgroup analysis for the presence of different allergen sensitivities. None of the selected SNPs in FCER1A was associated with total IgE level.

Conclusions

Although FCER1A presents itself as a good candidate for contributing to total serum IgE, this study failed to find an association between SNPs in the FCER1A gene region and IgE level or AR susceptibility.  相似文献   

11.
IgA is an important factor in our immune system. There are many diseases associated with it, such as IgA nephropathy, IgA deficiency, and so on. In order to describe the relationship between the genes and the IgA level, we performed a genome-wide association study of serum IgA with 1,999 healthy Chinese men in the first stage and replicated on an independent Chinese sample with 1,496 subjects in the second stage. Association between each SNP with IgA was estimated by multivariate linear regression analysis conditioned on age and smoke. Haplotype analysis for the block around the top SNP was performed. In the first stage, one genomic locus was identified to be significantly associated with IgA. The loci is TNFSF13 (17p13.1; rs3803800; P?=?6.26?×?10(-8)). In smoke-specific analysis, rs3803800 was approximately significantly associated with IgA levels in smokers (P?=?3.96?×?10(-7)), while no association was observed in nonsmokers (P?=?2.28?×?10(-1)). In addition, we performed the haplotype analysis on chromosome 17 with the SNPs around rs3803800. Although the total P value for the haplotype did not acquire significant difference, three haplotypes (TGAG, CACG, and CACA) reached significant (P?相似文献   

12.
Immunoglobulin E (IgE)-mediated hypersensitivity against environmental allergens, commonly including Dermatophagoides farinae, is associated with atopic diseases in both humans and dogs. We have recently identified a family of clinically healthy West Highland white terriers (WHWTs) with high-serum D. farinae-IgE levels. In this study, we investigated the genetic mechanism controlling IgE responsiveness in dogs by performing a genome-wide association study (GWAS) using the Affymetrix V2 Dog SNP array in 31 high-IgE and 24 low-IgE responder WHWTs. A gene-dropping simulation method, using SIB-PAIR software, showed significant allelic association between serum D. farinae-specific IgE levels and a 2.3-Mb area on CFA35 (best empirical P = 1 × 10(-5)). A nearby candidate gene, CD83, encodes a protein which has important immunological functions in antigen presentation and regulation of humoral immune responses. We sequenced this gene in 2 high-IgE responders and 2 low-IgE responders and identified an intronic polymorphic repeat sequence with a predicted functional effect, but the association was insufficient to explain the GWAS association signal in this population (P = 1 × 10(-3)). Further studies are necessary to investigate the significance of these findings for IgE responsiveness and atopic disease in the dog.  相似文献   

13.
Many candidate genes have been studied for asthma, but replication has varied. Novel candidate genes have been identified for various complex diseases using genome-wide association studies (GWASs). We conducted a GWAS in 492 Mexican children with asthma, predominantly atopic by skin prick test, and their parents using the Illumina HumanHap 550 K BeadChip to identify novel genetic variation for childhood asthma. The 520,767 autosomal single nucleotide polymorphisms (SNPs) passing quality control were tested for association with childhood asthma using log-linear regression with a log-additive risk model. Eleven of the most significantly associated GWAS SNPs were tested for replication in an independent study of 177 Mexican case–parent trios with childhood-onset asthma and atopy using log-linear analysis. The chromosome 9q21.31 SNP rs2378383 (p = 7.10×10−6 in the GWAS), located upstream of transducin-like enhancer of split 4 (TLE4), gave a p-value of 0.03 and the same direction and magnitude of association in the replication study (combined p = 6.79×10−7). Ancestry analysis on chromosome 9q supported an inverse association between the rs2378383 minor allele (G) and childhood asthma. This work identifies chromosome 9q21.31 as a novel susceptibility locus for childhood asthma in Mexicans. Further, analysis of genome-wide expression data in 51 human tissues from the Novartis Research Foundation showed that median GWAS significance levels for SNPs in genes expressed in the lung differed most significantly from genes not expressed in the lung when compared to 50 other tissues, supporting the biological plausibility of our overall GWAS findings and the multigenic etiology of childhood asthma.  相似文献   

14.
By studying the loci that contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Study (LLS) and 1670 younger population controls. The strongest candidate SNPs from this GWAS have been analyzed in a meta-analysis of nonagenarian cases from the Rotterdam Study, Leiden 85-plus study, and Danish 1905 cohort. Only one of the 62 prioritized SNPs from the GWAS analysis (P<1×10(-4) ) showed genome-wide significance with survival into old age in the meta-analysis of 4149 nonagenarian cases and 7582 younger controls [OR=0.71 (95% CI 0.65-0.77), P=3.39 × 10(-17) ]. This SNP, rs2075650, is located in TOMM40 at chromosome 19q13.32 close to the apolipoprotein E (APOE) gene. Although there was only moderate linkage disequilibrium between rs2075650 and the ApoE ε4 defining SNP rs429358, we could not find an APOE-independent effect of rs2075650 on longevity, either in cross-sectional or in longitudinal analyses. As expected, rs429358 associated with metabolic phenotypes in the offspring of the nonagenarian cases from the LLS and their partners. In addition, we observed a novel association between this locus and serum levels of IGF-1 in women (P=0.005). In conclusion, the major locus determining familial longevity up to high age as detected by GWAS was marked by rs2075650, which tags the deleterious effects of the ApoE ε4 allele. No other major longevity locus was found.  相似文献   

15.
Previous genome-wide association studies (GWAS) have shown several risk alleles to be associated with breast cancer. However, the variants identified so far contribute to only a small proportion of disease risk. The objective of our GWAS was to identify additional novel breast cancer susceptibility variants and to replicate these findings in an independent cohort. We performed a two-stage association study in a cohort of 3,064 women from Alberta, Canada. In Stage I, we interrogated 906,600 single nucleotide polymorphisms (SNPs) on Affymetrix SNP 6.0 arrays using 348 breast cancer cases and 348 controls. We used single-locus association tests to determine statistical significance for the observed differences in allele frequencies between cases and controls. In Stage II, we attempted to replicate 35 significant markers identified in Stage I in an independent study of 1,153 cases and 1,215 controls. Genotyping of Stage II samples was done using Sequenom Mass-ARRAY iPlex platform. Six loci from four different gene regions (chromosomes 4, 5, 16 and 19) showed statistically significant differences between cases and controls in both Stage I and Stage II testing, and also in joint analysis. The identified variants were from EDNRA, ROPN1L, C16orf61 and ZNF577 gene regions. The presented joint analyses from the two-stage study design were not significant after genome-wide correction. The SNPs identified in this study may serve as potential candidate loci for breast cancer risk in a further replication study in Stage III from Alberta population or independent validation in Caucasian cohorts elsewhere.  相似文献   

16.
Tao S  Feng J  Webster T  Jin G  Hsu FC  Chen SH  Kim ST  Wang Z  Zhang Z  Zheng SL  Isaacs WB  Xu J  Sun J 《Human genetics》2012,131(7):1225-1234
Approximately 40 single nucleotide polymorphisms (SNPs) that are associated with prostate cancer (PCa) risk have been identified through genome-wide association studies (GWAS). However, these GWAS-identified PCa risk-associated SNPs can explain only a small proportion of heritability (~13%) of PCa risk. Gene-gene interaction is speculated to be one of the major factors contributing to the so-called missing heritability. To evaluate the gene-gene interaction and PCa risk, we performed a two-stage genome-wide gene-gene interaction scan using a novel statistical approach named "Boolean Operation-based Screening and Testing". In the first stage, we exhaustively evaluated all pairs of SNP-SNP interactions for ~500,000 SNPs in 1,176 PCa cases and 1,101 control subjects from the National Cancer Institute Cancer Genetic Markers of Susceptibility (CGEMS) study. No SNP-SNP interaction reached a genome-wide significant level of 4.4E-13. The second stage of the study involved evaluation of the top 1,325 pairs of SNP-SNP interactions (P(interaction) <1.0E-08) implicated in CGEMS in another GWAS population of 1,964 PCa cases from the Johns Hopkins Hospital (JHH) and 3,172 control subjects from the Illumina iControl database. Sixteen pairs of SNP-SNP interactions were significant in the JHH population at a P(interaction) cutoff of 0.01. However, none of the 16 pairs of SNP-SNP interactions were significant after adjusting for multiple tests. The current study represents one of the first attempts to explore the high-dimensional etiology of PCa on a genome-wide scale. Our results suggested a list of SNP-SNP interactions that can be followed in other replication studies.  相似文献   

17.
The aim of this study was to explore candidate single nucleotide polymorphisms (SNPs) and candidate mechanisms of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Two SLE genome-wide association studies (GWASs) datasets were included in this study. Meta-analysis was conducted using 737,984 SNPs in 1,527 SLE cases and 3,421 controls of European ancestry, and 4,429 SNPs that met a threshold of p?<?0.01 in a Korean RA GWAS dataset was used. ICSNPathway (identify candidate causal SNPs and pathways) analysis was applied to the meta-analysis results of the SLE GWAS datasets, and a RA GWAS dataset. The most significant result of SLE GWAS meta-analysis concerned rs2051549 in the human leukocyte antigen (HLA) region (p?=?3.36E?22). In the non-HLA region, meta-analysis identified 6 SNPs associated with SLE with genome-wide significance (STAT4, TNPO3, BLK, FAM167A, and IRF5). ICSNPathway identified five candidate causal SNPs and 13 candidate causal pathways. This pathway-based analysis provides three hypotheses of the biological mechanism involved. First, rs8084 and rs7192?→?HLA-DRA?→?bystander B cell activation. Second, rs1800629?→?TNF?→?cytokine network. Third, rs1150752 and rs185819?→?TNXB?→?collagen metabolic process. ICSNPathway analysis identified three candidate causal non-HLA SNPs and four candidate causal pathways involving the PADI4, MTR, PADI2, and TPH2 genes of RA. We identified five candidate SNPs and thirteen pathways, involving bystander B cell activation, cytokine network, and collagen metabolic processing, which may contribute to SLE susceptibility, and we revealed candidate causal non-HLA SNPs, genes, and pathways of RA.  相似文献   

18.
Most genome-wide association studies consider genes that are located closest to single nucleotide polymorphisms (SNPs) that are highly significant for those studies. However, the significance of the associations between SNPs and candidate genes has not been fully determined. An alternative approach that used SNPs in expression quantitative trait loci (eQTL) was reported previously for Crohn’s disease; it was shown that eQTL-based preselection for follow-up studies was a useful approach for identifying risk loci from the results of moderately sized GWAS. In this study, we propose an approach that uses eQTL SNPs to support the functional relationships between an SNP and a candidate gene in a genome-wide association study. The genome-wide SNP genotypes and 10 biochemical measures (fasting glucose levels, BUN, serum albumin levels, AST, ALT, gamma GTP, total cholesterol, HDL cholesterol, triglycerides, and LDL cholesterol) were obtained from the Korean Association Resource (KARE) consortium. The eQTL SNPs were isolated from the SNP dataset based on the RegulomeDB eQTL-SNP data from the ENCODE projects and two recent eQTL reports. A total of 25,658 eQTL SNPs were tested for their association with the 10 metabolic traits in 2 Korean populations (Ansung and Ansan). The proportion of phenotypic variance explained by eQTL and non-eQTL SNPs showed that eQTL SNPs were more likely to be associated with the metabolic traits genetically compared with non-eQTL SNPs. Finally, via a meta-analysis of the two Korean populations, we identified 14 eQTL SNPs that were significantly associated with metabolic traits. These results suggest that our approach can be expanded to other genome-wide association studies.  相似文献   

19.
Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na+/K+ ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5–18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na+/K+ ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.  相似文献   

20.
With the recent success of genome-wide association studies (GWAS), a wealth of association data has been accomplished for more than 200 complex diseases/traits, proposing a strong demand for data integration and interpretation. A combinatory analysis of multiple GWAS datasets, or an integrative analysis of GWAS data and other high-throughput data, has been particularly promising. In this study, we proposed an integrative analysis framework of multiple GWAS datasets by overlaying association signals onto the protein-protein interaction network, and demonstrated it using schizophrenia datasets. Building on a dense module search algorithm, we first searched for significantly enriched subnetworks for schizophrenia in each single GWAS dataset and then implemented a discovery-evaluation strategy to identify module genes with consistent association signals. We validated the module genes in an independent dataset, and also examined them through meta-analysis of the related SNPs using multiple GWAS datasets. As a result, we identified 205 module genes with a joint effect significantly associated with schizophrenia; these module genes included a number of well-studied candidate genes such as DISC1, GNA12, GNA13, GNAI1, GPR17, and GRIN2B. Further functional analysis suggested these genes are involved in neuronal related processes. Additionally, meta-analysis found that 18 SNPs in 9 module genes had P meta<1×10−4, including the gene HLA-DQA1 located in the MHC region on chromosome 6, which was reported in previous studies using the largest cohort of schizophrenia patients to date. These results demonstrated our bi-directional network-based strategy is efficient for identifying disease-associated genes with modest signals in GWAS datasets. This approach can be applied to any other complex diseases/traits where multiple GWAS datasets are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号