首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tikhonova  E. N.  Men’ko  E. V.  Ulanova  R. V.  Li  H.  Kravchenko  I. K. 《Microbiology》2019,88(6):781-785
Microbiology - Effect of temperature on succession changes of the saprotrophic bacterial community of gray forest soil in the course of decomposition of aspen leaves and branches was studied in...  相似文献   

2.
Chitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA and chiA genes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity of chiA gene types in soil is enormous and (i) that different chiA gene types are selected by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one of Actinobacteria in the immediate response to the added chitin (based on 16S rRNA gene abundance and chiA gene types) was indicated. The results of this study enhance our understanding of the response of the soil bacterial communities to chitin and are of use for both the understanding of soil suppressiveness and the possible mining of soil for novel enzymes.  相似文献   

3.
Sediment and tailings samples were collected from sites with a contrasting physicochemical gradient to investigate microbial squalene-hopene cyclase (sqhC) composition and distribution in terrestrial environments. Acidobacteria (66%), Alphaproteobacteria (96%) and Gammaproteobacteria (55%) were found to dominate sqhC communities, respectively, at the acidic Dajiuhu Peatland, the alkaline Heshang Cave and strongly acidic tailings of Tongling copper mine in China. Statistical analysis confirmed that pH was the important factor impacting the geographical distribution of sqhC at phylum level. sqhC gene abundance is comparable at the three sites. However, the total amount of hopanoids in per gram total organic matter content (TOC) is 1.75 times higher in the acidic peatland than that in the alkaline Cave and it is below the detecting limit in tailings of Tongling copper mine, inferring the potential impact of pH in regulating the hopanoid production.  相似文献   

4.
The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.  相似文献   

5.
不同pH值土壤及其浸提液对羊草种子萌发和幼苗生长的影响   总被引:23,自引:0,他引:23  
研究了不同pH值土壤以及重度盐碱土和非盐碱土浸提液对羊草(Leymus chinensis)种子萌发及幼苗生长的影响。不同pH值土壤由配土和调酸两种方式取得,前者由重度盐碱土(pH=10.24)与非盐碱土(pH=7.49)按不同比例配制,后者是由重度苏打盐碱土经硫酸调酸处理得到。配土发芽的实验结果表明,当pH值在7.49-9.14时,种子的发芽率均在50%以上,且幼苗能够正常生长;pH=9.53时,羊草种子的发芽率低于50%,仅部分幼苗个体能够成活;当pH>9.86时,幼苗在萌发后50天左右全部枯死。说明羊草种子个体萌发期最大耐受pH值在9.14-9.53之间。重度苏打盐碱土调酸发芽实验结果表明,当调酸后的土壤pH值降至7.0-10.0时,均能显著促进羊草种子的萌发,且幼苗生长正常。确定了羊草种子萌发的最适pH值为8.0-8.5。土/水比为1:1的非盐碱土浸提液能够显著提高羊草种子发芽率,而重度苏打盐碱土浸提液对羊草种子萌发没有产生显著抑制。  相似文献   

6.
Abstract In this study, two different agricultural soils were investigated: one organic soil and one sandy soil, from Stend (south of Bergen), Norway. The sandy soil was a field frequently tilled and subjected to crop rotations. The organic soil was permanent grazing land, infrequently tilled. Our objective was to compare the diversity of the cultivable bacteria with the diversity of the total bacterial population in soil. About 200 bacteria, randomly isolated by standard procedures, were investigated. The diversity of the cultivable bacteria was described at phenotypic, phylogenetic, and genetic levels by applying phenotypical testing (Biolog) and molecular methods, such as amplified rDNA restriction analysis (ARDRA); hybridization to oligonucleotide probes; and REP-PCR. The total bacterial diversity was determined by reassociation analysis of DNA isolated from the bacterial fraction of environmental samples, combined with ARDRA and DGGE analysis. The relationship between the diversity of cultivated bacteria and the total bacteria was elucidated. Organic soil exhibited a higher diversity for all analyses performed than the sandy soil. Analysis of cultivable bacteria resulted in different resolution levels and revealed a high biodiversity within the population of cultured isolates. The difference between the two agricultural soils was significantly higher when the total bacterial population was analyzed than when the cultivable population was. Thus, analysis of microbial diversity must ultimately embrace the entire microbial community DNA, rather than DNA from cultivable bacteria.  相似文献   

7.
The aim of this study was to compare two major hypotheses concerning the formation of bacterial community composition (BCC) at the local scale, i.e., whether BCC is determined by the prevailing local environmental conditions or by “metacommunity processes.” A batch culture experiment where bacteria from eight distinctly different aquatic habitats were regrown under identical conditions was performed to test to what extent similar communities develop under similar selective pressure. Differently composed communities emerged from different inoculum communities, as determined by terminal restriction fragment length polymorphism analysis of the 16S rRNA gene. There was no indication that similarity increased between communities upon growth under identical conditions compared to that for growth at the ambient sampling sites. This suggests that the history and distribution of taxa within the source communities were stronger regulating factors of BCC than the environmental conditions. Moreover, differently composed communities were different with regard to specific functions, such as enzyme activities, but maintained similar broad-scale functions, such as biomass production and respiration.  相似文献   

8.
9.
Although soil structure largely determines energy flows and the distribution and composition of soil microhabitats, little is known about how microbial community composition is influenced by soil structural characteristics and organic matter compartmentalization dynamics. A UV irradiation-based procedure was developed to specifically isolate inner-microaggregate microbial communities, thus providing the means to analyze these communities in relation to their environment. Whole- and inner-microaggregate fractions of undisturbed soil and soils reclaimed after disturbance by surface coal mining were analyzed using 16S rDNA terminal restriction fragment polymorphism (T-RFLP) and sequence analyses to determine salient bacterial community structural characteristics. We hypothesized that inner-microaggregate environments select for definable microbial communities and that, due to their sequestered environment, inner-microaggregate communities would not be significantly impacted by disturbance. However, T-RFLP analysis indicated distinct differences between bacterial populations of inner-microaggregates of undisturbed and reclaimed soils. While both undisturbed and reclaimed inner-microaggregate bacterial communities were found dominated by Actinobacteria, undisturbed soils contained only Actinobacteridae, while in inner-microaggregates of reclaimed soils Rubrobacteridae predominate. Spatial stratification of division-level lineages within microaggregates was also evidenced, with Proteobacteria clones being prevalent in libraries derived from whole microaggregates. The fractionation methods employed in this study therefore represent a valuable tool for defining relationships between biodiversity and soil structure.  相似文献   

10.
The Brazilian Savanna, also known as “Cerrado”, is the richest and most diverse savanna in the world and has been ranked as one of the main hotspots of biodiversity. The Cerrado is a representative biome in Central Brazil and the second largest biome in species diversity of South America. Nevertheless, large areas of native vegetation have been converted to agricultural land including grain production, livestock, and forestry. In this view, understanding how land use affects microbial communities is fundamental for the sustainable management of agricultural ecosystems. The aim of this work was to analyze and compare the soil bacterial communities from the Brazilian Cerrado associated with different land use systems using high throughput pyrosequencing of 16S rRNA genes. Relevant differences were observed in the abundance and structure of bacterial communities in soils under different land use systems. On the other hand, the diversity of bacterial communities was not relevantly changed among the sites studied. Land use systems had also an important impact on specific bacterial groups in soil, which might change the soil function and the ecological processes. Acidobacteria, Proteobacteria, and Actinobacteria were the most abundant groups in the Brazilian Cerrado. These findings suggest that more important than analyzing the general diversity is to analyze the composition of the communities. Since soil type was the same among the sites, we might assume that land use was the main factor defining the abundance and structure of bacterial communities.  相似文献   

11.
The method based on characterization of microbial populations in terms of their growth rate in agar plates has been used for testing the prediction of the theory of r- and K-selection in a microbial community from a tropical soil. Conditions which could lead bacterial populations to grow exponentially or to enter into a stationary phase were obtained by growing soil microbial populations in a chemostat and in a chemostat with recycle, respectively. Significant differences in population distribution patterns were observed by comparing results from the two growth systems. When soil community was grown in a chemostat and subjected specifically to well-defined r- and K-conditions, stable associations of organisms with r- and K-type characteristics developed as a consequence of environmental pressure. In contrast, when cultivated in chemostat with recycle under the same r- and K-conditions imposed on chemostat cultures, distribution patterns of r- and K-selected populations appeared very little affected by changes in substrate availability.  相似文献   

12.
The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-automated ribosomal intergenic spacer analysis of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed the difference of composition of the bacterial community according to the location. Bacteria belonging to the γ-subgroup of proteobacteria were stimulated when residues were incorporated whereas the α-subgroup was stimulated when residues were left at the soil surface. Moreover, Actinobacteria were more represented when residues were left at the soil surface. According to the ecological attributes of the populations identified, our results suggested that climatic fluctuations at the soil surface select populations harboring enhanced catabolic and/or survival capacities whereas residues characteristics likely constitute the main determinant of the composition of the bacterial community colonizing incorporated residues.  相似文献   

13.
14.
Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (−R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/−R). Zero-tillage treatments (ZT/+R and ZT/−R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities.Agricultural sustainability is linked to soil management and efficient use of natural and economic resources (25, 53). Sustainable handling of resources can be obtained by applying conservation agricultural practices, i.e., reduced tillage, crop residue retention, and crop rotation (26). Reduced tillage and crop residue retention have been proposed, as they facilitate water infiltration, reduce erosion, improve soil structure, increase soil organic matter and carbon content, and moderate soil temperatures (13, 16, 30, 33, 56). Compared with conventional tillage and crop residue removal, these practices can also decrease production costs by reducing the use of heavy machinery, fuels, water, and fertilizers (19, 23). The positive effect of these practices seems to be correlated with the improvement of soil structure and a higher availability of organic substrates for microorganisms (3, 30). Improved soil structure allows better soil aeration and diffusion of water and nutrients through the soil profile, while the retention of crop residues enhances microbial activity and the soil microbial biomass content (12, 28). These improvements in soil quality can also increase soil microbial diversity, thus protecting crops against pests and diseases through competition for soil nutrients (8).Until now, most research has focused on microbial communities affected by agricultural practices, i.e., tillage and residue management, by using indicators such as plate counting and microbial biomass or by analyzing denaturing gradient gel bacterial banding patterns (21, 22, 37). Salles et al. (46) reported the use of canonical correspondence analysis on denaturing gradient gel electrophoresis banding pattern data to understand the effect of crop and land history on Burkholderia communities. However, few studies have applied phylogenetic and multivariate analyses to understand the effect of soil management practices, i.e., tillage and residue management, on microbial communities.It is necessary to interpret the changes in microbial communities as a function of contextual environmental parameters to analyze the effect of anthropogenic activities on microbial communities (42). Once modifications in microbial communities are interpreted as a function of contextual environments, it becomes possible to determine the kind of organisms that dominate such environments and to establish whether specific practices could lead to changes in beneficial or nonbeneficial microorganisms for agro-ecosystems. Changes in microbial communities can then be related to food production, soil quality, and greenhouse gas emissions (19, 20, 36).Govaerts et al. (19, 20, 21, 22) had previously characterized the soils used in this study. They showed that soils under zero tillage (ZT) and crop residue retention (+R) have better soil quality, crop yields, and catabolic diversity and a higher diversity of microflora groups than do soils under conventional tillage (CT) with or without crop residue retention (−R). The aim of this study was to complement the results of Govaerts et al. (19, 20, 21, 22) by using phylogenetic approaches and the additive main effect and multiplicative interactions (AMMI) model (18, 60) to analyze the effect of the above treatments on soil bacterial communities.  相似文献   

15.
Soils harbor enormously diverse bacterial populations, and soil bacterial communities can vary greatly in composition across space. However, our understanding of the specific changes in soil bacterial community structure that occur across larger spatial scales is limited because most previous work has focused on either surveying a relatively small number of soils in detail or analyzing a larger number of soils with techniques that provide little detail about the phylogenetic structure of the bacterial communities. Here we used a bar-coded pyrosequencing technique to characterize bacterial communities in 88 soils from across North and South America, obtaining an average of 1,501 sequences per soil. We found that overall bacterial community composition, as measured by pairwise UniFrac distances, was significantly correlated with differences in soil pH (r = 0.79), largely driven by changes in the relative abundances of Acidobacteria, Actinobacteria, and Bacteroidetes across the range of soil pHs. In addition, soil pH explains a significant portion of the variability associated with observed changes in the phylogenetic structure within each dominant lineage. The overall phylogenetic diversity of the bacterial communities was also correlated with soil pH (R2 = 0.50), with peak diversity in soils with near-neutral pHs. Together, these results suggest that the structure of soil bacterial communities is predictable, to some degree, across larger spatial scales, and the effect of soil pH on bacterial community composition is evident at even relatively coarse levels of taxonomic resolution.The biogeographical patterns exhibited by microbial communities have been examined in a wide range of environments, and studies focusing on microbial biogeography continue to be published at a rapid pace. We know that microbial community diversity and composition can vary considerably across space, and this variation is theorized to be linked to changes in a number of biotic or abiotic factors (22, 36, 41). There are numerous overarching reasons for this interest in understanding microbial biogeography. For example, comparing microbial patterns to those commonly observed in plant and animal taxa is of intense theoretical interest (22, 25). From a more practical standpoint, studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of microbial taxa, particularly those difficult-to-culture taxa that often dominate in natural environments. However, perhaps the most important rationale for studying microbial biogeography is the most basic one: microbes are diverse, ubiquitous, and abundant, yet their biogeographical patterns and the factors driving these spatial patterns often remain poorly understood.No single biogeographical pattern is shared by all microorganisms, just as there is no single biogeographical pattern followed by all “macrobial” (i.e., plant and animal) communities (31). The specific biogeographical patterns exhibited by microorganisms are variable and highly dependent on a number of factors, including the taxonomic group in question (29), the degree of phylogenetic resolution at which the communities are examined (e.g., Pseudomonas) (7), and the spatial scale of the study (40). However, some common patterns emerge if we specifically examine the biogeography of soil microorganisms. In particular, the structure and diversity of soil bacterial communities have been found to be closely related to soil environmental characteristics (5, 37, 47), and soil pH is often correlated with the observed biogeographical patterns (19, 24). However, due to the paucity of detailed and comprehensive studies of soil bacterial biogeography, particularly across larger spatial scales, our understanding of soil microbial biogeography remains incomplete.Previous studies of soil bacterial biogeography have focused on either surveying a few soils in detail or surveying a larger number of soils by techniques that offer less detailed phylogenetic information. For example, a few recent studies used pyrosequencing or Sanger sequencing-based techniques to deeply survey the diversity and composition of the bacterial communities within a single soil or a few soils (1, 14, 20, 39, 42). Such studies are valuable in that they provide our best assessments of overall bacterial diversity and community structure and the relative abundances of specific bacterial taxa within soils. However, because such studies often examine only a limited number of soils, they do not allow for robust assessment of biogeographical patterns and the factors that may drive these patterns. Other studies have examined bacterial communities across a larger number of soils, using more limited techniques, such as fingerprinting methods that offer little specific phylogenetic information on bacterial community structure or techniques that describe communities at very coarse levels of taxonomic resolution (18, 19). A comprehensive assessment of the biogeographical patterns exhibited by soil bacterial communities requires both depth (individual communities surveyed at a reasonable level of phylogenetic detail) and breadth (examining a sufficiently large number of samples to assess spatial patterns). With the recent development of the bar-coded pyrosequencing technique (23), we need not sacrifice depth for breadth, or vice versa. This was demonstrated in several recent studies (2, 12, 17, 28) that used bar-coded pyrosequencing to simultaneously analyze relatively large numbers of individual samples, surveying the bacterial community in each sample to an extent that would be difficult (or prohibitively expensive) using standard cloning and Sanger sequencing techniques.Here we apply the bar-coded pyrosequencing technique to examine the structure and diversity of bacterial communities in 88 soils collected from across North and South America. This work expands on a previous fingerprinting-based survey of bacterial communities across a similar set of soils (19), using the pyrosequencing technique to extend the analyses and to answer the following questions. Which taxa are most abundant in soil? How does the phylogenetic structure of bacterial communities vary across the continental scale? Which environmental factors best predict bacterial community structure and diversity? Are some soil bacterial phyla more diverse than others?  相似文献   

16.
Wildfires and harvesting are important disturbances to forest ecosystems, but their effects on soil microbial communities are not well characterized and have not previously been compared directly. This study was conducted at sites with similar soil, climatic, and other properties in a spruce-dominated boreal forest near Chisholm, Alberta, Canada. Soil microbial communities were assessed following four treatments: control, harvest, burn, and burn plus timber salvage (burn-salvage). Burn treatments were at sites affected by a large wildfire in May 2001, and the communities were sampled 1 year after the fire. Microbial biomass carbon decreased 18%, 74%, and 53% in the harvest, burn, and burn-salvage treatments, respectively. Microbial biomass nitrogen decreased 25% in the harvest treatment, but increased in the burn treatments, probably because of microbial assimilation of the increased amounts of available NH4+ and NO3 due to burning. Bacterial community composition was analyzed by nonparametric ordination of molecular fingerprint data of 119 samples from both ribosomal intergenic spacer analysis (RISA) and rRNA gene denaturing gradient gel electrophoresis. On the basis of multiresponse permutation procedures, community composition was significantly different among all treatments, with the greatest differences between the two burned treatments versus the two unburned treatments. The sequencing of DNA bands from RISA fingerprints revealed distinct distributions of bacterial divisions among the treatments. Gamma- and Alphaproteobacteria were highly characteristic of the unburned treatments, while Betaproteobacteria and members of Bacillus were highly characteristic of the burned treatments. Wildfire had distinct and more pronounced effects on the soil microbial community than did harvesting.  相似文献   

17.
Minerals constitute an ecological niche poorly investigated in the soil, in spite of their important role in biogeochemical cycles and plant nutrition. To evaluate the impact of minerals on the structure of the soil bacterial communities, we compared the bacterial diversity on mineral surfaces and in the surrounding soil. Three pure and calibrated minerals (apatite, plagioclase and a mix of phlogopite-quartz) were buried into the organo-mineral layer of a forest soil. After a 4-year incubation in soil conditions, mineral weathering and microbial colonization were evaluated. Apatite and plagioclase were the only two significantly weathered minerals. The analysis of the 16S rRNA gene sequences generated by the cloning-sequencing procedure revealed that bacterial diversity was higher in the surrounding soil and on the unweathered phlogopite-quartz samples compared with the other minerals. Moreover, a multivariate analysis based on the relative abundance of the main taxonomic groups in each compartments of origin demonstrated that the bacterial communities from the bulk soil differed from that colonizing the minerals. A significant correlation was obtained between the dissolution rate of the minerals and the relative abundance of Beta-proteobacteria detected. Notably, many sequences coming from bacteria colonizing the mineral surfaces, whatever the mineral, harbored high similarity with efficient mineral weathering bacteria belonging to Burkholderia and Collimonas genera, previously isolated on the same experimental site. Taken together, the present results provide new highlights concerning the bacterial communities colonizing minerals surfaces in the soil and suggests that the minerals create true ecological niches: the mineralosphere.  相似文献   

18.
The effect of freeze-thaw (FT) cycles on Arctic tundra soil bacterial community was studied in laboratory microcosms. FT-induced changes to the bacterial community were followed over a 60-day period by terminal restriction fragment length polymorphism (T-RFLP) profiles of amplified 16S rRNA genes and reverse transcribed 16S rRNA. The main phylotypes of the active, RNA-derived bacterial community were identified using clone analysis. Non-metric multidimensional scaling ordination of the T-RFLP profiles indicated some shifts in the bacterial communities after three to five FT cycles at −2, −5, and −10°C as analyzed both from the DNA and rRNA. The dominating T-RFLP peaks remained the same, however, and only slight variation was generally detected in the relative abundance of the main T-RF sizes of either DNA or rRNA. T-RFLP analysis coupled to clone analysis of reverse transcribed 16S rRNA indicated that the initial soil was dominated by members of Bacteroidetes, Acidobacteria, Alpha-, Beta-, and Gammaproteobacteria. The most notable change in the rRNA-derived bacterial community was a decrease in the relative abundance of a Betaproteobacteria-related phylotype after the FT cycles. This phylotype decreased, however, also in the control soil incubated at constant +5°C suggesting that the decrease was not directly related to FT sensitivity. The results indicate that FT caused only minor changes in the bacterial community structure.  相似文献   

19.
A culture-independent approach was used to evaluate the bacterial community in rhizospheric and nonrhizospheric soil in which Panax ginseng had grown for 3?years. For each sample, soil was randomly collected from multiple sampling points and mixed thoroughly before genomic DNA extraction. Universal primers 27f and 1492r were used to amplify 16S rRNA genes. Clone libraries were constructed using the amplified 16S rRNA genes, and 192 white clones were chosen for further sequencing. After digestion with restriction endonuclease, 44 operational taxonomic units (OTUs) were generated for rhizospheric and 21 OTUs for nonrhizospheric soils, and the clones of each OTU were sequenced. Blast analysis showed that bacillus, acidobacteria, and proteobacteria were the dominant populations in rhizospheric soil, and proteobacteria were dominant in nonrhizospheric soil. Phylogenetic results showed that bacillus and acidobacteria were clustered into the group of uncultured bacteria in rhizospheric soil; however, proteobacteria were the unique dominant in nonrhizospheric soil.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号