首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammalian polo-like kinase 1 (Plk1) plays a pivotal role during M-phase progression. Plk1 localizes to specific subcellular structures through the targeting activity of the C-terminal polo-box domain (PBD). Disruption of the PBD function results in improper bipolar spindle formation, chromosome missegregation, and cytokinesis defect that ultimately lead to the generation of aneuploidy. It has been shown that Plk1 recruits itself to centromeres by phosphorylating and binding to a centromere scaffold, PBIP1 (also called MLF1IP and CENP-U[50]) through its PBD. However, how PBIP1 itself is targeted to centromeres and what roles it plays in the regulation of Plk1-dependent mitotic events remain unknown. Here, we demonstrated that PBIP1 directly interacts with CENP-Q, and this interaction was mutually required not only for their stability but also for their centromere localization. Plk1 did not appear to interact with CENP-Q directly. However, Plk1 formed a ternary complex with PBIP1 and CENP-Q through a self-generated p-T78 motif on PBIP1. This complex formation was central for Plk1-dependent phosphorylation of PBIP1-bound CENP-Q and delocalization of the PBIP1-CENP-Q complex from mitotic centromeres. This study reveals a unique mechanism of how PBIP1 mediates Plk1-dependent phosphorylation event onto a third protein, and provides new insights into the mechanism of how Plk1 and its recruitment scaffold, PBIP1-CENP-Q complex, are localized to and delocalized from centromeres.  相似文献   

2.
The polo-box domain (PBD) of mammalian polo-like kinase 1 (Plk1) is essential in targeting its catalytic activity to specific subcellular structures critical for mitosis. The mechanism underlying Plk1 recruitment to the kinetochores and the role of Plk1 at this site remain elusive. Here, we demonstrate that a PBD-binding protein, PBIP1, is crucial for recruiting Plk1 to the interphase and mitotic kinetochores. Unprecedentedly, Plk1 phosphorylated PBIP1 at T78, creating a self-tethering site that specifically interacted with the PBD of Plk1, but not Plk2 or Plk3. Later in mitosis, Plk1 also induced PBIP1 degradation in a T78-dependent manner, thereby enabling itself to interact with other components critical for proper kinetochore functions. Absence of the p-T78-dependent Plk1 localization induced a chromosome congression defect and compromised the spindle checkpoint, ultimately leading to aneuploidy. Thus, Plk1 self-regulates the Plk1-PBIP1 interaction to timely localize to the kinetochores and promote proper chromosome segregation.  相似文献   

3.
Mammalian Plk1 is critically required for proper M phase progression. Plk1 is self-recruited to prekinetochores/kinetochores by phosphorylating and binding to the Thr-78 motif of a kinetochore scaffold protein, PBIP1 (also called CENP-U/50), which forms a stable complex with another kinetochore component, CENP-Q. However, the mechanism regulating Plk1 localization to this site remains largely unknown. Here, we demonstrate that the PBIP1·CENP-Q complex became hyperphosphorylated and rapidly delocalized from kinetochores as cells entered mitosis. Plk1 phosphorylated the CENP-Q subunit of the PBIP1·CENP-Q complex at multiple sites, and mutation of nine Plk1-dependent phosphorylation sites to Ala (9A) enhanced CENP-Q association with chromatin and prolonged CENP-Q localization to kinetochores. Conversely, mutation of the nine sites to phospho-mimicking Asp/Glu (9D/E) residues dissociated CENP-Q from chromatin and kept the CENP-Q(9D/E) mutant from localizing to interphase prekinetochores. Strikingly, both the 9A and 9D/E mutants induced a defect in proper chromosome segregation, suggesting that both timely localization of the PBIP1·CENP-Q complex to prekinetochores and delocalization from kinetochores are critical for normal M phase progression. Notably, although Plk1 did not alter the level of PBIP1 and CENP-Q ubiquitination, Plk1-dependent phosphorylation and delocalization of these proteins from kinetochores appeared to indirectly lead to their degradation in the cytosol. Thus, we propose that Plk1 regulates the timing of the delocalization and ultimate destruction of the PBIP1·CENP-Q complex and that these processes are important not only for promoting Plk1-dependent mitotic progression, but also for resetting the timing of Plk1 recruitment to prekinetochores in the next cell cycle.  相似文献   

4.
Mammalian polo-like kinase 1 (Plk1) has been studied extensively as a critical element in regulating various mitotic events during M-phase progression. Plk1 function is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Recent progress in our understanding of Plk1 localization to the centromeres shows that Plk1 self-regulates its initial recruitment by phosphorylating a centromeric component PBIP1 and generating its own PBD-binding site. Paradoxically, Plk1 also induces PBIP1 delocalization and degradation from the mitotic kinetochores late in the cell cycle, consequently permitting itself to bind to other kinetochore components. Thus, PBIP1-dependent self-recruitment of Plk1 to the interphase centromeres serves as a prelude to the efficient delivery of Plk1 itself to other kinetochore components whose interactions with Plk1 are vital for proper mitotic progression.  相似文献   

5.
Polo-like kinase 1 (Plk1) plays a critical role in proper M-phase progression and cell proliferation. Plk1 is overexpressed in a broad spectrum of human cancers and is considered an attractive anticancer drug target. Although a large number of inhibitors targeting the catalytic domain of Plk1 have been developed, these inhibitors commonly exhibit a substantial level of cross-reactivity with other structurally related kinases, thus narrowing their applicable dose for patient treatment. Plk1 contains a C-terminal polo-box domain (PBD) that is essentially required for interacting with its binding targets. However, largely due to the lack of both specific and membrane-permeable inhibitors, whether PBD serves as an alternative target for the development of anticancer therapeutics has not been rigorously examined. Here, we used an intracellularly expressed 29-mer-long PBIP1-derived peptide (i.e., PBIPtide), which can be converted into a “suicidal” PBD inhibitor via Plk1-dependent self-priming and binding. Using this highly specific and potent system, we showed that Plk1 PBD inhibition alone is sufficient for inducing mitotic arrest and apoptotic cell death in cancer cells but not in normal cells, and that cancer cell–selective killing can occur regardless of the presence or absence of oncogenic RAS mutation. Intriguingly, PBD inhibition also effectively prevented anchorage-independent growth of malignant cancer cells. Thus, targeting PBD represents an appealing strategy for anti-Plk1 inhibitor development. Additionally, PBD inhibition–induced cancer cell–selective killing may not simply stem from activated RAS alone but, rather, from multiple altered biochemical and physiological mechanisms, which may have collectively contributed to Plk1 addiction in cancer cells.  相似文献   

6.
Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus‐end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein‐dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP‐170 or CENP‐E depletion or by noscapine treatment are similarly accompanied by severe spindle‐positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re‐establishes proper spindle orientation. Hence, KT‐enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.  相似文献   

7.
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1.  相似文献   

8.
The Plk (polo-like kinase) family is involved in cell-cycle machinery. Despite the possible overlapping involvement of Plk1 and Plk3 in cell-cycle distribution, the precise role of each Plk might be different. To investigate mechanisms that may differentiate their physiological roles, we compared the substrate specificities of Plk1 and Plk3 using synthetic peptides. Among these substrate peptides, topoisomerase IIalpha EKT(1342)DDE-containing synthetic peptide was strongly phosphorylated by Plk3 but not by Plk1. By modulating the topoisomerase IIalpha peptide, we identified residues at positions +1, +2 and +4 as determinants of differential substrate recognition between Plk1 and Plk3. Acidic residues at positions +2 and +4 appear to be a positive determinant for Plk3 but not Plk1. Variation at position +1 appears to be tolerated by Plk3, while a hydrophobic residue at +1 is critical for Plk1 activity. The direct phosphorylation of Thr(1342) of topoisomerase IIalpha by Plk3 was demonstrated with an in vitro kinase assay, and overexpression of Plk3 induced the phosphorylation of Thr(1342) in cellular topoisomerase IIalpha. Furthermore, the physical interaction between Plk3 and topoisomerase IIalpha was also demonstrated in cells in addition to phosphorylation. These data suggest that topoisomerase IIalpha is a novel physiological substrate for Plk3 and that Plk1 and Plk3 play different roles in cell-cycle regulation.  相似文献   

9.
Polo-like kinase 1 (Plk1) is required for the generation of the tension-sensing 3F3/2 kinetochore epitope and facilitates kinetochore localization of Mad2 and other spindle checkpoint proteins. Here, we investigate the mechanism by which Plk1 itself is recruited to kinetochores. We show that Plk1 binds to budding uninhibited by benzimidazole 1 (Bub1) in mitotic human cells. The Plk1-Bub1 interaction requires the polo-box domain (PBD) of Plk1 and is enhanced by cyclin-dependent kinase 1 (Cdk1)-mediated phosphorylation of Bub1 at T609. The PBD-dependent binding of Plk1 to Bub1 facilitates phosphorylation of Bub1 by Plk1 in vitro. Depletion of Bub1 in HeLa cells by RNA interference (RNAi) diminishes the kinetochore localization of Plk1. Ectopic expression of the wild-type Bub1, but not the Bub1-T609A mutant, in Bub1-RNAi cells restores the kinetochore localization of Plk1. Our results suggest that phosphorylation of Bub1 at T609 by Cdk1 creates a docking site for the PBD of Plk1 and facilitates the kinetochore recruitment of Plk1.  相似文献   

10.
Polo-like kinases (Plks) are serine/threonine kinases that are highly conserved in organisms from yeasts to humans. Previous reports have shown that Plk1 is critical for all stages of mitosis and may play a role in DNA replication during S phase. While much work has focused on Plk1, little is known about the physiological function of Plk1 in vivo. To address this question, we generated Plk1 knockout mice. Plk1 homozygous null mice were embryonic lethal, and early Plk1−/− embryos failed to survive after the eight-cell stage. Immunocytochemistry studies revealed that Plk1-null embryos were arrested outside the mitotic phase, suggesting that Plk1 is important for proper cell cycle progression. It has been postulated that Plk1 is a potential oncogene, due to its overexpression in a variety of tumors and tumor cell lines. While the Plk1 heterozygotes were healthy at birth, the incidence of tumors in these animals was threefold greater than that in their wild-type counterparts, demonstrating that the loss of one Plk1 allele accelerates tumor formation. Collectively, our data support that Plk1 is important for early embryonic development and may function as a haploinsufficient tumor suppressor.  相似文献   

11.
Polo-like kinase 1 (Plk1) has multiple important functions during M-phase progression. In addition to a catalytic domain, Plk1 possesses a phosphopeptide-binding motif, the polo-box domain (PBD), which is required for proper localization. Here, we have explored the importance of correct Plk1 subcellular targeting for its mitotic functions. We either displaced endogenous Plk1 through overexpression of the PBD or introduced the catalytic domain of Plk1, lacking the PBD, into Plk1-depleted cells. Both treatments resulted in remarkably similar phenotypes, which were distinct from the Plk1 depletion phenotype. Cells depleted of Plk1 mostly arrested with monoastral spindles, because of inhibition of centrosome maturation and separation. In contrast, these functions were not impaired in cells with mislocalized Plk1. Instead, these latter cells showed a checkpoint-dependent mitotic arrest characterized by impaired chromosome congression. Thus, whereas chromosome congression requires localized Plk1 activity, other investigated Plk1 functions are less dependent on correct PBD-mediated targeting. This opens the possibility that PBD-directed drugs might be developed to selectively interfere with a subset of Plk1 functions.  相似文献   

12.
Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases.  相似文献   

13.
Polo-box motif targets a centrosome regulator, RanGTPase   总被引:3,自引:0,他引:3  
Mammalian polo-like kinase (Plk) acts at various stages in early and late mitosis. Plk1 localizes in the centrosome, the central spindle, the midbody as well as the kinetochore. The non-catalytic region in the C-terminus of Plk1 has conserved sequence motifs, named polo-boxes. These motifs are important for Plk localization. GFP protein fused with the core sequences of polo-box (50 amino acids) localized Plk to target organelles. We screened for Plk interacting proteins by constructing a tandem repeat of the polo-box motif, and used it as bait in the two-hybrid system with HeLa cell cDNA library. RanGTPase was detected as a positive clone. Through in vitro and in vivo protein binding analysis in synchronized cells by thymidine block and by nocodazole treatment, we confirmed the interaction between endogenous Ran and Plk1. We showed that endogenous Ran and Plk1 proteins were co-localized to centrosomes, which is a major target organelle of endogenous Plk1, in early mitotic cells by immunofluorescence. Finally, we demonstrated that Plk1 phosphorylated RanBPM, a Ran-binding protein in microtubule organizing center, through the interaction with Ran. These data suggested that the core motif of polo-box is sufficient for Plk1-targeting, and that Plk1 may play roles in centrosome through recruitment and/or activation of Ran/RanBPM proteins.  相似文献   

14.
Polo-like kinases play crucial roles throughout mitosis. We previously reported that wortmannin potently inhibits Polo-like kinase 1 (Plk1). In this study, we show that wortmannin also strongly inhibits Polo-like kinase 3 (Plk3). To further characterize this inhibition, we identified the sites of labeling on Plk1 and Plk3 targeted by AX7503, a tetramethylrhodamine-wortmannin conjugate. AX7503 labeling on Plk1 and Plk3 was found to occur on a conserved ATP binding site residue. In addition, we show that wortmannin inhibits Plk3 activity in live cells at concentrations commonly used to inhibit the more well known targets of wortmannin, the phosphoinositide 3-kinases. Importantly, we found that inhibition of Plk3 by wortmannin lead to a decrease in phosphorylation of p53 on serine 20 induced by DNA damage, demonstrating the effect of wortmannin on a downstream Plk3 target. Taken together, our results suggest that wortmannin can affect multiple functions of Plk3 in cell cycle progression and at the DNA damage check point. The identification of the labeling sites of Plk1 and Plk3 by AX7503 may be useful in designing more effective compounds to target Polo-like kinases for cancer treatment and also may be useful for the structural study of Plk domains.  相似文献   

15.
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.  相似文献   

16.
A role for Plk1 phosphorylation of NudC in cytokinesis   总被引:7,自引:0,他引:7  
Polo-like kinase 1 (Plk1) plays essential roles at multiple events during cell division, yet little is known about its physiological substrates. In a cDNA phage display screen using Plk1 C-terminal affinity columns, we identified NudC (nuclear distribution gene C) as a Plk1 binding protein. Here, we characterize the interaction between Plk1 and NudC, show that Plk1 phosphorylates NudC at conserved S274 and S326 residues in vitro, and present evidence that NudC is also a substrate for Plk1 in vivo. Downregulation of NudC by RNA interference results in multiple mitotic defects, including multinucleation and cells arrested at the midbody stage, which are rescued by ectopic expression of wild-type NudC, but not by NudC with mutations in the Plk1 phosphorylation sites. These results suggest that Plk1 phosphorylation of NudC may influence cytokinesis.  相似文献   

17.
Polo-like kinase 1 (Plk1) is central to cell division. Here, we report that Plk1 is critical for mitosis in the embryonic development of zebrafish. Using a combination of several cell biology tools, including single-cell live imaging applied to whole embryos, we show that Plk1 is essential for progression into mitosis during embryonic development. Plk1 morphant cells displayed mitotic infidelity, such as abnormal centrosomes, irregular spindle assembly, hypercondensed chromosomes, and a failure of chromosome arm separation. Consequently, depletion of Plk1 resulted in mitotic arrest and finally death by 6 days post-fertilization. In comparison, Plk2 or Plk3 morphant embryos did not display any significant abnormalities. Treatment of embryos with the Plk1 inhibitor, BI 2536, caused a block in mitosis, which was more severe when used to treat plk1 morphants. Finally, using an assay to rescue the Plk1 morphant phenotype, we found that the kinase domain and PBD domains are both necessary for Plk1 function in zebrafish development. Our studies demonstrate that Plk1 is required for embryonic proliferation because its activity is crucial for mitotic integrity. Furthermore, our study suggests that zebrafish will be an efficient and economical in vivo system for the validation of anti-mitotic drugs.  相似文献   

18.
Polo-like kinase 1 (Plk1) is a core regulator of cell division and an emerging target for cancer therapy. Pharmacologic inhibitors of Plk1 exist but affect other kinases, complicating their in vivo validation. To address this, we examined effects of two structurally unrelated Plk1 inhibitors (BI-2536 and TAL) against isogenic human cell lines that solely express wildtype (wt) or analogue-sensitive (as) Plk1 alleles. Unexpectedly, Plk1(as) cells displayed profound biochemical and functional resistance to both inhibitors. Cells that co-express Plk1(wt) and Plk1(as) exhibit loss-of-function phenotypes only when both kinase alleles are inhibited. Resistance to BI-2536 is linked to an intragenic suppressor mutation (C67V) that restores an otherwise invariant valine to the kinase active site. Structural modeling demonstrates that this mutation not only enables Plk1(as) to function in vivo but also occludes BI-2536 from the ATP-binding pocket. Our results reveal the molecular basis of Plk inhibitor selectivity and a potential mechanism for tumor cell resistance.  相似文献   

19.
Xiong F  Lin Y  Han Z  Shi G  Tian L  Wu X  Zeng Q  Zhou Y  Deng J  Chen H 《Molecular biology reports》2012,39(2):1935-1942
Polo-like kinase 1 (Plk1) is a conserved serine/threonine protein kinase that plays pivotal roles during the cell cycle and cell proliferation. Although a number of important targets have been identified, the mechanism of Plk1-regulated pathways and the bulk of the Plk1 interactome are largely unknown. Here, we demonstrate that Plk1 interacts with the DExH/D RNA helicase, UAP56. The protein levels of UAP56 and Plk1 are inversely correlated during the cell cycle. We also show that Plk1 phosphorylates UAP56 in vitro and in vivo and that Plk1-dependent phosphorylation of UAP56 triggers ubiquitination and degradation of UAP56 through proteasomes. This result suggests that Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Our results will be helpful in further understanding mRNA metabolism, cell cycle progression, and the link between mRNA metabolism and cellular function.  相似文献   

20.
Two new polypyridyl ligands containing substituent Br at different positions in the phenyl ring, PBIP [PBIP=2-(4-bromophenyl)imidazo[4,5-f]1,10-phenanthroline], OBIP [OBIP=2-(2-bromophenyl)imidazo[4,5-f]1,10-phenanthroline] and their Ru(II) complexes, [Ru(phen)2PBIP]2+ 1, [Ru(phen)2OBIP]2+ 2 (phen=1,10-phenanthroline), have been synthesized and characterized. The binding strength of the two complexes to calf thymus DNA (CT DNA) was investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The theoretical calculations for these two complexes were also carried out applying the density functional theory (DFT) method. The experimental results show that the Br group substituting H at different positions of the phenyl ring in the intercalated ligand has significant effects on the spectral properties and the DNA-binding behaviors of Ru(II) complexes. Both the complexes can bind to CT DNA in intercalative mode and interact with CT DNA enantioselectively. Moreover, complex 1 can bind to CT DNA more strongly than complex 2, and complex 2 can become a much better candidate as an enantioselective binder to CT DNA than complex 1. The theoretical calculations show that both intercalative ligands, PBIP and OBIP, in these two complexes are essentially planar, and the obtained electronic structures of the complexes can be used to explain reasonably some of their experimental regularities or trends. Such experimental and theoretical information will be useful in design of novel probes of nucleic acid structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号