首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photogenerated magnesium octaethylporphyrin cation in glycerol monooleate bilayers is shown to mediate the transport of H3O+ and/or OH-. Data from voltage clamp and open-circuit experiments are consistent with the classic Markin or Laüger carrier model. Photoinitiated currents exhibit the expected transient and steady-state behavior.  相似文献   

2.
If a polyhalide concentration gradient exists across a bilayer lipid membrane (BLM), ion pair movement occurs. The term ion pair indicates a lipid soluble complex of cation and anion with stoichiometry dictated by the respective charges. In a mixture of metal halide (MXn, X = I, Cl, Br) and iodine, the ion pair is of the form M(I2X)n. The flux of ion pairs was monitored by measuring the flow of metal ions or polyhalide ions across the BLM. The flux of ion pairs across the BLM depended on cation crystal radius, fluidity of the membrane, strength of the ion pair complex and on the osmotic gradient (i.e., there exists a coupling between water and ion pair fluxes). The relationship between ion pairing and the electrical conductivity of BLM is briefly discussed.  相似文献   

3.
The autocorrelation function of a given process is related to its spectral density by the Wiener-Khintchine theorem, and both expressions contain the same information. We report here a measurement of the current noise produced in a lipid bilayer membrane doped with hydrophobic anions of dipicrylamine. The results are in good agreement both with relaxation measurements on the same membrane and with an analysis of the spectral density of the current noise for this system which has been presented by other workers. Although measurement of the spectral density function is generally more complete for technical reasons, the autocorrelation function provides, for the case studied here, more physical insight into the underlying charge transport mechanism. We find that the measured autocorrelation function is negative at short, but nonzero, times. This is a consequence of the operative conductance mechanism in this case, which cannot carry current continuously in the same direction without compensatory reverse flow.  相似文献   

4.
A future class of amperometric biosensors may utilize gated ion channels such as acetylcholine and glutamate receptors as chemical detection components. In this study, bilayer lipid membranes containing voltage-dependent anion channels (VDAC) were used to model an ion-channel-based biosensor which could continuously monitor AC amperometric changes resulting from induced changes in channel conductance. The in-phase and quadrature components of the induced alternating membrane current were monitored as a function of the applied DC offset voltage which was superimposed on the sinusoidal test voltage. The accuracy and sensitivity of the AC-measured VDAC response was dependent on the magnitude of the AC test voltage relative to the DC offset necessary for channel closure. The VDAC channel appears to be a suitable model protein for AC impedance-based biosensor fabrication.  相似文献   

5.
Phloretin, the aglucone derivative of phlorizin, increases cation conductance and decreases anion conductance in lipid bilayer membranes. In this paper we present evidence that phloretin acts almost exclusively by altering the permeability of the membrane interior and not by modifying the partition of the permanent species between the membrane and the bulk aqueous phases. We base our conclusion on an analysis of the current responses to a senylborate, and the cation complex, peptide PV-K+. These results are consistent with the hypothesis that phloretin decreases the intrinsic positive internal membrane potential but does not modify to a great extent the potential energy minima at the membrane interfaces. Phloretin increases the conductance for the nonactin-K+ complex, but above 10(-5) M the steady- state nonactin-K+ voltage-current curve changes from superlinear to sublinear. These results imply that, above 10(-5) M phloretin, the nonactin-5+ transport across the membrane becomes interfacially limited.  相似文献   

6.
The electrophoretic mobilities of multilamellar phosphatidylserine vesicles were measured in solutions containing monovalent cations, and the xi potentials, the electrostatic potentials at the hydrodynamic plane of shear, were calculated from the Helmholtz--Smoluchowski equation. In the presence of 0.1 M lithium, sodium, ammonium, potassium, rubidium, cesium, tetraethylammonium, and tetramethylammonium chloride, the xi potentials were -60, -62, -72, -73, -77, -80, -82, and -91 mV, respectively. Similar results were obtained with phosphatidylglycerol vesicles; different results were obtained with cardiolipin, phosphatidylinositol, and phosphatidic acid vesicles. The phosphatidylserine results are interpreted in terms of the Stern equation, a combination of the Gouy equation from the theory of the diffuse double layer, the Boltzmann relation, and the Langmuir adsorption isotherm. Evidence is presented that suggests the hydrodynamic plane of shear is 2 A from the surface of the membrane in solutions containing the alkali metal cations. With this assumption, the intrinsic association constants of the above monovalent cations with phosphatidylserine are 0.8, 0.6, 0.17, 0.15, 0.08, 0.05, 0.03, and 0 M-1, respectively. The validity of this approach was tested in two ways. First, the xi potentials of vesicles formed from mixtures of phosphatidylserine and a zwitterionic lipid, phosphatidylcholine, were measured in solutions containing different concentrations of sodium. All the data could be described by the Stern equation if the "relaxation" of the ionic atmosphere, which is predicted by classic electrostatic and hydrodynamic theory to occur at low salt concentrations and high potentials, was circumvented by using only large (diameter greater than 13 micrometers) vesicles for these measurements. Second, the fluorescent probe 2-(p-toluidinyl)naphthalene-6-sulfonate was used to estimate the potential at the surface of phosphatidylserine and phosphatidylglycerol vesicles sonicated in 0.1 M NaCl. Reasonable agreement with the predicted values of the surface potential was obtained.  相似文献   

7.
Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility modulus K, the critical areal strain alpha c, and the tensile strength tau lys, from which the failure energy or membrane toughness Tf was calculated. The elastic area expansion moduli for these lipid and lipid/cholesterol bilayers ranged from 57 dyn/cm for DAPC to 1,734 dyn/cm for BSM/CHOL. The SOPC/CHOL series and RBC lipids had intermediate values. The results indicated that the presence of cholesterol is the single most influential factor in increasing bilayer cohesion, but only for lipids where both chains are saturated, or mono- or diunsaturated. Multiple unsaturation in both lipid chains inhibits the condensing effect of cholesterol in bilayers. The SOPC/CHOL system was studied in more detail. The area expansion modulus showed a nonlinear increase with increasing cholesterol concentration up to a constant plateau, indicating a saturation limit for cholesterol in the bilayer phase of approximately 55 mol% CHOL. The membrane compressibility was modeled by a property-averaging composite theory involving two bilayer components, namely, uncomplexed lipid and a lipid/cholesterol complex of stoichiometry 1/1.22. The area expansion modulus of this molecular composite membrane was evaluated by a combination of the expansion moduli of each component scaled by their area fractions in the bilayer. Bilayer toughness, which is the energy stored in the bilayer at failure, showed a maximum value at approximately 40 mol% CHOL. This breakdown energy was found to be only a fraction of the available thermal energy, implying that many molecules (approximately 50-100) may be involved in forming the defect structure that leads to failure. The area expansion modulus of extracted RBC lipids with native cholesterol was compared with recent measurements of intact RBC membrane compressibility. The natural membrane was also modeled as a simple composite made up to a compressible lipid/cholesterol matrix containing relatively incompressible transmembrane proteins. It appears that the interaction of incompressible proteins with surrounding lipid confers enhanced compressibility on the composite structure.  相似文献   

8.
9.
The transport of electrons across biological membranes is believed to play an important role in many biophenomena. Although there have been many examples of systems which may be transporting electrons across Mueller-Rudin bilayer lipid membranes (blm), none has been well characterized. The system we describe here comprises a glycerol monooleate blm containing a magnesium etiochlorin (Mg-C) separating two aqueous phases each containing ferricyanide, ferrocyanide, KCl, and a platinum electrode. The E0s for the Mg-C+/Mg-C and ferri-/ferrocyanide couples are 0.22 and 0.24 V vs. SCE. Thus the MG-C+/Mb-C system is easily poised by the ferri-/ferrocyanide system. When the potentials of the ferri-/ferrocyanide couples are different on each side of the blm we show that the open-circuit membrane potential nearly equals the difference between the redox potentials. This is unequivocal evidence that electrons are being transferred across the blm from one aqueous phase to the other. On the basis of these experiments we deduce that electron transport is the major charge transport mechanism. When redox potentials are the same on each side of the blm, the conductance of the membrane can be greater than 10(-3) S/cm2. The conductance is proportional to the second power of the concentration of Mg-C in the membrane-forming mixture. A number of additional experiments are described which attempt to elucidate the mechanism of electron transfer. We believe that our data are consistent with the idea of an electron-hopping mechanism in which the transmembrane electron transport occurs by a series of second-order electron transfers between membrane-bound electron donors (Mg-C) and acceptors (Mg-C+). Alternative explanations are presented.  相似文献   

10.
11.
12.
Ion transport across lipid bilayer membranes in the presence of macrotetrolide antibiotics has been studied by stationary conductance and nonstationary relaxation methods. The results are discussed on the basis of a carrier model which has already been successfully applied to valinomycin induced ion transport. Again a kinetic analysis has been performed from which the single rate constants of the carrier model could be derived. In addition the equilibrium constant of complex formation in the aqueous phase could be determined. Measurements have been made for 4 macrotetrolides, for several ions and for various chain lengths of the lipids molecules composing the membrane.  相似文献   

13.
Cadmium and thallous ion permeabilities through lipid bilayer membranes   总被引:3,自引:0,他引:3  
Cadmium (Cd2+) and thallous ion (Tl+) permeabilities were measured in planar (Mueller-Rudin) lipid bilayer membranes made from diphytanoylphosphatidylcholine in decane. Permeabilities of the electroneutral Cl- complexes, measured with tracers (109Cd and 204Tl), were about 10(-8) cm X s-1 for CdCl2 and 10(-6) cm X s-1 for TlCl. Electrical conductance measurements showed that permeabilities to Cd2+ and Tl+ were approx. 10(-11) cm X s-1, similar to the Na+ permeability. The low permeabilities to both Cd2+ and CdCl2 are consistent with biological studies which suggest that Cd transport and toxicity are protein mediated and correlated with Cd2+, not CdCl2, concentration. However, the low bilayer permeability to Tl+ raises questions about recent reports that Tl+ is a lipid permeable cation in biological membranes and liposomes. An alternative explanation for the lipid permeable behavior of Tl+ is presented, based on the diffusion of TlCl and other complexes of Tl+ with inorganic and organic anions.  相似文献   

14.
The Stern equation, a combination of the Langmuir adsorption isotherm, the Boltzmann relation, and the Grahame equation from the theory of the diffuse double layer, provides a simple theoretical framework for describing the adsorption of charged molecules to surfaces. The ability of this equation to describe the adsorption of divalent cations to membranes containing brain phosphatidylserine (PS) was tested in the following manner. Charge reversal measurements were first made to determine the intrinsic 1:1 association constants of the divalent cations with the anionic PS molecules: when the net charge of a PS vesicle is zero one-half of the available sites are occupied by divalent cations. The intrinsic association constant, therefore, is equal to the reciprocal of the divalent cation concentration at which the mobility of a PS vesicle reverses sign. The Stern equation with this association constant is capable of accurately describing both the zeta potential data obtained with PS vesicles at other concentrations of the divalent cations and the data obtained with with vesicles formed from mixtures of PS and zwitterionic phospholipids. Independent measurements of the number of ions adsorbed to sonicated PS vesicles were made with a calcium-sensitive electrode. The results agreed with the zeta potential results obtained with multilamellar vesicles. When membranes are formed at 20 degrees C in 0.1 M NaCl, the intrinsic 1:1 association constants of Ni, Co, Mn, Ba, Sr, Ca, and Mg with PS are 40, 28, 25, 20, 14, 12, and 8 M-1, respectively.  相似文献   

15.
We made use of a planar lipid bilayer system to examine the action of synthetic basic peptides which model the prepiece moiety of mitochondrial protein precursors and have antibacterial activity against Gram-positive bacteria. The sequences of the peptides used were as follows: Ac-(Ala-Arg-Leu)3-NHCH3 (3(3], Ac-(Leu-Ala-Arg-Leu)2-NHCH3 (4(2], Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], Ac-(Leu-Leu-Ala-Arg-Leu)2-NHCH3 (5(2]. These peptides interacted differently with planar lipid bilayer membranes and membrane conductance increased by the formation of ion channels. The effects of the peptides on the macroscopic current-increase and on the probability of channel formation, at the single channel level were in the order of 4(3) greater than 4(2) approximately 5(2) much greater than 3(3), a finding which correlates with the antibacterial activity of these peptides. The micromolar (microM) order concentration at which the channel was formed resembles that causing antibacterial activity. Thus, the peptide antibacterial activity may occur through an increase in ion permeability of the bacterial membrane. The single-channel properties were investigated in detail using 4(3), the peptide with the highest ion channel-forming activity. Many types of channels were observed with respect to conductance (2-750 pS) and voltage dependency of gating. However, the channels were all cation-selective. These results suggest that the ion channels formed by peptide 4(3) may be able to take on a variety of conformations and/or assembly.  相似文献   

16.
Galactocerebroside-phospholipid interactions in bilayer membranes.   总被引:1,自引:3,他引:1       下载免费PDF全文
Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.  相似文献   

17.
18.
19.
The effects of millimeter microwaves in the frequency range of 54–76 GHz on capacitance and conductance of lipid bilayer membranes (BLM) were studied. Some of the membranes were modified by gramicidin A and amphotericin B or by tetraphenylboron anions (TPhB?). The millimeter microwaves were pulse-modulated (PW) at repetition rates ranging from 1 to 100 pps, PW at 1000 pps, or unmodulated continuous waves (CW). The maximum output power at the waveguide outlet was 20 mW. It was found that CW irradiation decreased the unmodified BLM capacitance by 1.2% ± 0.5%. At the same time, membrane current induced by TPhB transport increased by 5% ± 1%. The changes in conductance of ionic channels formed by gramicidin A and amphotericin B were small (0.6% ± 0.4%). No “resonance-like” effects of mm-wave irradiation on membrane capacitance, ionic channel currents, or TPhB transport were detected. All changes in membrane capacitance and currents were independent of the modulation employed and were equivalent to heating by approximately 1.1 °C. © 1995 Wiley-Liss, Inc.  相似文献   

20.
The dynamic conductivity of bilayer lipid membranes unmodified by ionophores in current ranges of 10(-12)-10(-10) A was studied. On the current voltage characteristics the jumps of dynamic conductivity in the voltage ranges near zero and disruption value were observed. The lifetime of these jumps was 1-5 s. It was shown that these effects were due to electrostriction phenomena and defects in the bilayer lipid structure correspondingly. Apparently, lipid peroxidation products participate in the building of defects in lipid bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号