首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) techniques have been used to examine denatured states of lysozyme produced under a variety of conditions. 1H CIDNP difference spectra of lysozyme denatured thermally, by the addition of 10 M urea, or by the complete reduction of its four disulfide bonds were found to differ substantially not only from the spectrum of the native protein but also from that expected for a completely unstructured polypeptide chain. Specifically, denatured lysozyme showed a much reduced enhancement of tryptophan relative to tyrosine than did a mixture of blocked amino acids with the same composition as the intact protein. By contrast, the CIDNP spectrum of lysozyme denatured in dimethyl sulfoxide solution was found to be similar to that expected for a random coil. It is proposed that nonrandom hydrophobic interactions are present within the denatured states of lysozyme in aqueous solution and that these reduce the reactivity of tryptophan residues relative to tyrosine residues. Characterization of such interactions is likely to be of considerable significance for an understanding of the process of protein folding.  相似文献   

2.
The hydrogen exchange kinetics of 68 individual amide protons in the native state of hen lysozyme have been measured at pH 7.5 and 30 degrees C by 2D NMR methods. These constitute the most protected subset of amides, with exchange half lives some 10(5)-10(7) times longer than anticipated from studies of small model peptides. The observed distribution of rates under these conditions can be rationalized to a large extent in terms of the hydrogen bonding of individual amides and their burial from bulk solvent. Exchange rates have also been measured in a reversibly denatured state of lysozyme; this was made possible under very mild conditions, pH 2.0 35 degrees C, by lowering the stability of the native state through selective cleavage of the Cys-6-Cys-127 disulfide cross-link (CM6-127 lysozyme). In this state the exchange rates for the majority of amides approach, within a factor of 5, the values anticipated from small model peptides. For a few amides, however, there is evidence for significant retardation (up to nearly 20-fold) relative to the predicted rates. The pattern of protection observed under these conditions does not reflect the behavior of the protein under strongly native conditions, suggesting that regions of native-like structure do not persist significantly in the denatured state of CM6-127 lysozyme. The pattern of exchange rates from the native protein at high temperature, pH 3.8 69 degrees C, resembles that of the acid-denatured state, suggesting that under these conditions the exchange kinetics are dominated by transient global unfolding. The rates of folding and unfolding under these conditions were determined independently by magnetization transfer NMR methods, enabling the intrinsic exchange rates from the denatured state to be deduced on the basis of this model, under conditions where the predominant equilibrium species is the native state. Again, in the case of most amides these rates showed only limited deviation from those predicted by a simple random coil model. This reinforces the view that these denatured states of lysozyme have little persistent residual order and contrasts with the behavior found for compact partially folded states of proteins, including an intermediate detected transiently during the refolding of hen lysozyme.  相似文献   

3.
NMR signals from all four histidine ring C epsilon protons and three of the four histidine C delta protons in the protein staphylococcal nuclease have been assigned by comparing spectra of the wild-type (Foggi strain) protein to spectra of three variants that each lack a different histidine residue. All proteins studied were cloned and overproduced in Escherichia coli. The NMR spectra of the three mutant proteins (H8R, H46Y, and H124L) used to make these assignments were similar to one another and to those of the wild type, except for signals from the mutated residues. The pKa values of those histidines conserved between the wild type and the mutants remained essentially unchanged. Multiple histidine C epsilon proton resonances due to non-native forms of nuclease were observed in both thermally induced and acid-induced unfolding. Residue-specific assignments of H epsilon protons in the thermally denatured forms of the mutant H46Y were obtained from connectivities to the native state by saturation transfer.  相似文献   

4.
High-resolution 1H NMR spectroscopy at 300 MHz has been used to investigate the aromatic residues of a series of homologous polypeptides from sea anemones: anthopleurin-A from Anthopleura xanthogrammica and toxins I and II from Anemonia sulcata. Using two-dimensional NMR techniques, specific assignments to individual protons have been made for all aromatic resonances in the spectra of these molecules. In all three polypeptides the resonances from the two conserved Trp residues, 23 and 33, are shifted significantly from their random coil values, and the indole NH resonance of Trp-23 is not observed. These shift perturbations are due in part to a mutual interaction of the two indole rings, which is also indicated by the observation of nuclear Overhauser enhancements between protons of the two rings. Several other nonpolar side chains also interact with these two Trp residues, forming a hydrophobic region, the overall structure of which is conserved throughout the series. The other aromatic residues in these polypeptides appear not to participate in this structural region.  相似文献   

5.
1H-NMR relaxation times are reported for native and thermally denatured lysozyme aqueous solutions measured as the function of the proton mole fraction in the sample. A two-exponential character of proton longitudinal relaxation function was observed for native lysozyme solutions: the fast component was attributed to the non-exchangeable protein protons, the slow one to water protons. Purely exponential decay of longitudinal magnetization was observed for the thermally denatured samples. This has been explained in terms of a fast spin exchange model. The contributions of the protein protons to the water proton relaxation rate in native and thermally denatured samples were determined, too.  相似文献   

6.
T R Sosnick  J Trewhella 《Biochemistry》1992,31(35):8329-8335
Using small-angle X-ray scattering and Fourier transform infrared spectroscopy, we have determined that the thermally denatured state of native ribonuclease A is on average a compact structure having residual secondary structure. Under strongly reducing conditions, the protein further unfolds into a looser structure with larger dimensions but still retains a comparable amount of secondary structure. The dimensions of the thermally and chemically denatured states of the reduced protein are different but both are more compact than is predicted for a random coil of the same length. These results demonstrate that thermal denaturation in ribonuclease A is not a simple two-state transition from a native to a completely disordered random coil state.  相似文献   

7.
A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise this intermediate using multidimensional NMR spectroscopy. The 1H-15N heteronuclear single quantum coherence spectrum after a rapid temperature decrease (the spectrum of the intermediate) showed good chemical shift dispersion but was significantly different from that of the native state, suggesting that the intermediate adopts a nonnative but well-structured conformation. Large chemical shift changes for the backbone amide protons between the native and the intermediate states were observed for residues in the β-sheet consisting of strands 2, 3, 5, 6, and 7 as well as in the C-terminal region. These residues were found to be in close proximity to aromatic residues, suggesting that the chemical shift changes are mainly due to ring current shifts caused by the aromatic residues. The two-dimensional nuclear Overhauser enhancement (NOE) spectroscopy experiments showed that the intermediate contained substantial, native-like NOE connectivities, although there were fewer cross peaks in the spectrum of the intermediate compared with that of the native state. It was also shown that there were native-like interresidue NOEs for residues buried in the protein, whereas many of the NOE cross peaks were lost for the residues involved in a surface-exposed aromatic cluster. These results suggest that, in the intermediate, the aromatic cluster at the surface is structurally less organised, whereas the interior of the protein has relatively rigid, native-like side-chain packing.  相似文献   

8.
Plastocyanin is a predominantly beta-sheet protein containing a type I copper center. The conformational ensemble of a denatured state of apo-plastocyanin formed in solution under conditions of low salt and neutral pH has been investigated by multidimensional heteronuclear NMR spectroscopy. Chemical shift assignments were obtained by using three-dimensional triple-resonance NMR experiments to trace through-bond heteronuclear connectivities along the backbone and side chains. The (3)J(HN,Halpha) coupling constants, (15)N-edited proton-proton nuclear Overhauser effects (NOEs), and (15)N relaxation parameters were also measured for the purpose of structural and dynamic characterization. Most of the residues corresponding to beta-strands in the folded protein exhibit small upfield shifts of the (13)C(alpha) and (13)CO resonances relative to random coil values, suggesting a slight preference for backbone dihedral angles in the beta region of (phi,psi) space. This is further supported by the presence of strong sequential d(alphaN)(i, i + 1) NOEs throughout the sequence. The few d(NN)(i, i + 1) proton NOEs that are observed are mostly in regions that form loops in the native plastocyanin structure. No medium or long-range NOEs were observed. A short sequence, between residues 59 and 63, was found to populate a nonnative helical conformation in the unfolded state, as indicated by the shift of the (13)C(alpha), (13)CO, and (1)H(alpha) resonances relative to random coil values and by the decreased values of the (3)J(HN,Halpha) coupling constants. The (15)N relaxation parameters indicate restriction of motions on a nanosecond timescale in this region. Intriguingly, this helical conformation is present in a sequence that is close to but not in the same location as the single short helix in the native folded protein. The results are consistent with earlier NMR studies of peptide fragments of plastocyanin and confirm that the regions of the sequence that form beta-strands in the native protein spontaneously populate the beta-region of (phi,psi) space under folding conditions, even in the absence of stabilizing tertiary interactions. We conclude that the state of apo-plastocyanin present under nondenaturing conditions is a noncompact unfolded state with some evidence of nativelike and nonnative local structuring that may be initiation sites for folding of the protein.  相似文献   

9.
The resonances of nonprotonated aromatic carbons in natural abundance 13C NMR spectra of hen egg white lysozyme are assigned to specific residues of the amino acid sequence. Chemical shift considerations, the effect of pH, and partially relaxed Fourier transform NMR spectra are used to assign each resonance to one of the seven types of nonprotonated aromatic carbons of amino acid residues. Spectra of chemically modified lysozyme samples yield various assignments to specific residues in the sequence. Line-broadening effects caused by binding of the relaxation probes Gd3+ and 4-N-acetamido-2,2,6,6-tetramethylipiperidine-1-oxyl yield specific assignments which are fully consistent with those based on chemical modifications. The effects of paramagnetic shift reagents and amino sugar inhibitors do not yield any obvious specific assignments. The effect of pH on the chemical shift of Cgamma of His-15 yields a pKalpha in agreement with published values, and indicates that the imidazole form of His-15 exists mainly (or entirely) as the Nepsilon3-H tautomer. The effect of pH on the chemical shifts (measured up to pH 8.8, at 38 degrees) of Czeta and Cgamma of the 3 tyrosine residues yields crude pKalpha values of 9.5 and 10 for Tyr-23 and one of the other tyrosines, respectively. The 3rd tyrosine residue does not exhibit titration behavior.  相似文献   

10.
1H NMR (500 MHz) of gene 32 protein--oligonucleotide complexes   总被引:6,自引:0,他引:6  
In concentrated solutions, gene 32 single-stranded DNA binding protein from bacteriophage T4 (gene 32P) forms oligomers with long rotational correlation times, rendering 1H NMR signals from most of the protons too broad to be detected. Small flexible N- and C-terminal domains are present, however, the protons of which give rise to sharp resonances. If the C-terminal A domain (48 residues) and the N-terminal B domain (21 residues) are removed, the resultant core protein of 232 residues (gene 32P) retains high affinity for ssDNA and remains a monomer in concentrated solution, and most of the proton resonances of the core protein can now be observed. Proton NMR spectra (500 MHz) of gene 32P and its complexes with ApA, d(pA)n (n = 2, 4, 6, 8, and 10), and d(pT)8 show that the resonances of a group of aromatic protons shift upfield upon oligonucleotide binding. Proton difference spectra show that the 1H resonances of at least one Phe, one Trp, and five Tyr residues are involved in the chemical shift changes observed with nucleotide binding. The number of aromatic protons involved and the magnitude of the shifts change with the length of the oligonucleotide until the shifts are only slightly different between the complexes with d(pA)8 and d(pA)10, suggesting that the binding groove accommodates approximately eight nucleotide bases. Many of the aromatic proton NMR shifts observed on oligonucleotide complex formation are similar to those observed for oligonucleotide complex formation with gene 5P of bacteriophage fd, although more aromatic residues are involved in the case of gene 32P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
High-resolution proton nuclear magnetic resonance spectra of the trp repressor of Escherichia coli under various conditions are reported and analysed. The spectrum of the denatured state agrees with that predicted from the amino acid composition, with the exception of the two histidine residues, which have different chemical shifts although they titrate normally. The spectrum of the native protein shows the presence of extensive secondary and tertiary structure. Using information from chemical shifts, numbers of protons, titration behaviour, homonuclear chemical-shift-correlated spectroscopy and nuclear Overhauser enhancement correlated spectroscopy, most of the aromatic protons have been assigned to residue type. Further, about 30% of the aliphatic protons have been assigned to residue type by two-dimensional spectroscopy. Nuclear Overhauser enhancements establish that high-field methyl groups belonging to a valine residue lie directly over an aromatic ring.  相似文献   

12.
D Peyton  V Sardana  E Breslow 《Biochemistry》1987,26(6):1518-1525
Perdeuteriated peptides were synthesized that are capable of binding to the hormone binding site of neurophysin but that differ in the position of aromatic residues. The binding of these peptides to bovine neurophysin I and its des-1-8 derivative was studied by proton nuclear magnetic resonance spectroscopy in order to identify protein residues near the binding site through the observation of differential ring current effects on assignable protein resonances. Phenylalanine in position 3 of bound peptides was shown to induce significant ring current shifts in several resonances assignable to the 1-8 sequence, including those of Leu-3 and/or Leu-5, but was without effect on Tyr-49 ring protons. The magnitude of these shifts was dependent on the identity of peptide residue 1. By contrast, the sole demonstrable direct effect of an aromatic residue in position 1 was a downfield shift in Tyr-49 ring protons. Study of peptide binding to des-1-8-neurophysin demonstrated similar conformations of native and des-1-8 complexes except for the environment of Tyr-49, confirmed the peptide-induced ring current shift assignments in native neurophysin, and indicated an effect of binding on Thr-9. These observations are integrated with other results to provide a partial model of neurophysin-peptide complexes that places the ring of Tyr-49 at a distance 5-10 A from residue 1 of bound peptide and that places both the 1-8 sequence and the protein backbone region containing Tyr-49 proximal to each other and to peptide residue 3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A partly folded state of hen egg-white lysozyme has been characterized in 50% DMSO. Low concentrations of DMSO (<10%) have little effect on the overall folded conformation of lysozyme as seen from 1H NMR chemical shift dispersion. At increasing DMSO concentrations (>10%) a cooperative transition of the structure to a new, partially folded state is observed. This transition is essentially complete by ∼50% DMSO. NMR studies show an overall decrease in chemical shift dispersion with marked broadening of many resonances. A substantial number of backbone and side chain–side chain NOEs suggests the presence of secondary and tertiary interactions in the intermediate state. Tertiary organization of the aromatic residues is also demonstrated by enhanced near-UV circular dichroism and limited exposure of tryptophans as monitored by iodide quenching of fluorescence. The intermediate state exhibits enhanced binding to hydrophobic dyes. Further, the structural transition from this state to a largely unfolded conformation is cooperative. H/D exchange rates of several amide protons and four indole protons of tryptophans (W28, W108, W111, and W123), measured by refolding from 50% DMSO at different time intervals reveal that protection factors are high for the helical domain, whereas NH groups in the triple stranded antiparallel β-sheet domain are largely solvent-exposed. An ordered hydrophobic core in the intermediate state comprising of helix A, helix B, and helix D is consistent with the high protection factors observed. The structured intermediate in 50% DMSO resembles the early kinetic intermediate observed in the refolding of hen egg white lysozyme, as well as a molten globule state of equine lysozyme at low pH. The results demonstrate the potential use of nonaqueous structure perturbing solvents like DMSO to stabilize partially folded conformations of proteins. Proteins 29:492–507, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

14.
Many proteins form amyloid-like fibrils in vitro under conditions that favour the population of partially folded conformations or denatured state ensembles. Characterising the structural and dynamic properties of these states is crucial towards understanding the mechanisms of self-assembly in amyloidosis. The aggregation of beta2-microglobulin (beta2m) into amyloid fibrils in vivo occurs in the condition known as dialysis-related amyloidosis (DRA) and the protein has been shown to form amyloid-like fibrils under acidic conditions in vitro. We have used a number of 1H-15N nuclear magnetic resonance (NMR) experiments in conjunction with site-directed mutagenesis to study the acid-unfolded state of beta2m. 15N NMR transverse relaxation experiments reveal that the acid-denatured ensemble, although predominantly unfolded at the N and C termini, contains substantial non-native structure in the central region of the polypeptide chain, stabilised by long-range interactions between aromatic residues and by the single disulphide bond. Relaxation dispersion studies indicate that the acid-unfolded ensemble involves two or more distinct species in conformational equilibrium on the micro- to millisecond time-scale. One of these species appears to be hydrophobically collapsed, as mutations in an aromatic-rich region of the protein, including residues that are solvent-exposed in the native protein, disrupt this structure and cause a consequent decrease in the population of this conformer. Thus, acid-unfolded beta2m consists of a heterogeneous ensemble of rapidly fluctuating species, some of which contain stable, non-native hydrophobic clusters. Given that amyloid assembly of beta2m proceeds with lag kinetics under the conditions of this study, a rarely populated species such as a conformer with non-native aromatic clustering could be key to the initiation of amyloidosis.  相似文献   

15.
P Gettins 《Biochemistry》1987,26(5):1391-1398
1H NMR has been used to characterize and compare the structures of antithrombin III from human, bovine, and porcine plasma as well as to investigate the interactions of each of these proteins with heparin fragments of defined length. The amino acid compositions of the three proteins are very similar, which is reflected in the gross features of their 1H NMR spectra. In addition, aromatic and methyl proton resonances in upfield-shifted positions appear to be common to all three proteins and suggest similar tertiary structures. Human antithrombin III has five histidine residues, bovine has six, and porcine has five. The C(2) proton from each of these residues gives a narrow resonance and titrates with pH; the pKa's are in the range 5.15-7.25. It is concluded that all histidines in each protein are surface residues with considerable independent mobility. The carbohydrate chains in each protein also give sharp resonances consistent with a surface location and motional flexibility. The 1H spectra are sensitive to heparin binding. Although heparin resonances obscure protein resonances in the region 3.2-6.0 ppm, difference spectra between antithrombin III with and without heparin show clear perturbation of a small number of aromatic and aliphatic protein protons. These resonances include those of histidine C(2) and C(4) protons, of 10-20 other aromatic protons, of a methyl group, and also of protons with chemical shifts similar to those of lysine and/or arginine side chains. For human antithrombin III, it was shown that heparin fragments 8, 10, and 16 sugar residues in length result in almost identical perturbations to the protein. In contrast, tetrasaccharide results in fewer perturbations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
High-pressure (15)N/(1)H NMR techniques were used to characterize the conformational fluctuations of hen lysozyme, in its native state and when denatured in 8 M urea, over the pressure range 30--2000 bar. Most (1)H and (15)N signals of native lysozyme show reversible shifts to low field with increasing pressure, the average pressure shifts being 0.069 +/- 0.101 p.p.m. ((1)H) and 0.51 +/- 0.36 p.p.m. ((15)N). The shifts indicate that the hydrogen bonds formed to carbonyl groups or water molecules by the backbone amides are, on average, shortened by approximately 0.02 A as a result of pressure. In native lysozyme, six residues in the beta domain or at the alpha/beta domain interface have anomalously large nonlinear (15)N and (1)H chemical-shift changes. All these residues lie close to water-containing cavities, suggesting that there are conformational changes involving these cavities, or the water molecules within them, at high pressure. The pressure-induced (1)H and (15)N shifts for lysozyme denatured in 8 M urea are much more uniform than those for native lysozyme, with average backbone amide shifts of 0.081 +/- 0.029 p.p.m. ((1)H) and 0.57 +/- 0.14 p.p.m. ((15)N). The results show that overall there are no significant variations in the local conformational properties of denatured lysozyme with pressure, although larger shifts in the vicinity of a persistent hydrophobic cluster indicate that interactions in this part of the sequence may rearrange. NMR diffusion measurements demonstrate that the effective hydrodynamic radius of denatured lysozyme, and hence the global properties of the denatured ensemble, do not change detectably at high pressure.  相似文献   

17.
Summary The deuteration of the tryptophan residues of hen egg white lysozyme, bovine-lactalbumin and bovine-lactoglobulin in d-TFA has been studied by PMR spectroscopy. It is found that short times of exposure to d-TFA allow selective deuteration at the C-2 position with only a small amount of deuteration at the C-5 position, as expected from studies on model peptides described in the previous paper. The proteins studied essentially regained their native structures after the treatment, except for broadening and shifting of the histidine resonances in the case of-lactalbumin. Selective deuteration at the tryptophan C-2 position was readily observed by difference spectroscopy of the denatured protein, but PMR difference spectra of the same proteins in benign solvents did not contain resonances from all of the exchanged protons. Some resonances could not be observed because of line broadening, which causes the resonances to fall below the limit of sensitivity of detection at 100 MHz. Deuteration by brief exposure to d-TFA should be useful for the identification of tryptophan resonances in the PMR spectra of native proteins.The deuteration of all the aromatic protons of tryptophan residues in proteins by immersion in d-TFA for 4 hours at room temperature was studied. This technique is unlikely to be of general use for the simplification of the aromatic region of the PMR spectra of native proteins because of the degradation of tryptophan residues which results from the acid treatment.An invited article.  相似文献   

18.
F Jordan  L Polgar  G Tous 《Biochemistry》1985,24(26):7711-7717
A technique was developed to exchange the backbone -N-H protons in D2O in the native subtilisins Carlsberg and BPN (Novo) that resulted in clearly resolved proton resonances in the aromatic region of the nuclear magnetic resonance spectrum. pH titration curves for four of the five histidine C2-H resonances in subtilisin Carlsberg and five of the six in subtilisin BPN between 7.5 and 8.8 ppm downfield from 4,4-dimethyl-4-silapentane-1-sulfonic acid sodium salt provided microscopic pKa's between 6.3 and 7.2 for both sources of the enzyme at ambient (approximately 22 degrees C) probe temperature. A resonance that titrated with a pKapp of 7.35 +/- 0.05 was observed in the 1H spectra only of the diisopropylphosphoryl derivatives of the subtilisins from both sources. The 31P NMR pH titration of the same preparations under identical conditions of solvent (D2O) and temperature gave a pKapp = 7.40 +/- 0.05 of the single titratable resonance. Both observations must pertain to His-64 at the active center. A resonance smaller than the others and titrating with a pKapp of 7.2 could also be observed in the native enzymes. This resonance was assigned to the catalytic center histidine since its pK corresponded to that derived from kinetic studies. No major perturbations in the chemical shifts or the pK's derived from the pH dependence of the observed resonances were apparent in the presence of saturating concentrations of the two putative transition-state analogues phenylboronic acid and bis [3,5-(trifluoromethyl)phenyl]boronic acid and in monoisopropylphosphorylsubtilisin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Chemical shift assignment is reported for the protein ubiquitin denatured in 8M urea at pH 2. The variations in 15N chemical shifts of three different proteins (ubiquitin, disulfide reduced, carboxymethylated lysozyme, all-Ala--lactalbumin), all without disulfides and denatured in 8M urea at pH 2 are compared to `random coil shifts' of small model peptides (Braun et al., 1994) and to the averaged native chemical shifts taken from the BMRB database. Both parameterizations show a remarkable agreement with the averaged measured 15N chemical shifts in the three denatured proteins. Detailed analysis of these experimental 15N chemical shifts provides an estimate of the influence of nearest neighbors and conformational preferences on the chemical shift and provides a direct means to identify non-random structural preferences in denatured proteins.  相似文献   

20.
H Arakawa  Y Muto  Y Arata  A Ikai 《Biochemistry》1986,25(22):6785-6789
A proton nuclear magnetic resonance (NMR) study is reported of human alpha-2-macroglobulin (alpha-2-M). It was observed that alpha-2-M, which consists of four identical subunits and has a molecular weight of 720,000, gives several sharp resonances. After cleavage of the "bait" region peptide with trypsin and subsequent removal of the peptide under a high salt condition, most of the sharp resonances disappeared, indicating that the sharp resonances observed in the native alpha-2-M originate from the amino acid residues in the bait region. Resonances due to the aromatic protons of the Tyr residue, which exists in the bait region, have been assigned on the basis of chemical shift. It was observed that the C3- and C5-H proton resonances for the Tyr residue are especially narrow, indicating that the side chain of the Tyr residue in the bait region is in a highly mobile state. Photochemically induced dynamic nuclear polarization experiments clearly show that the Tyr residue is actually exposed to the solvent. It was possible to identify resonances due to several His residues that are exposed to solvent. Other resonances, which probably originate from Arg residues in the bait region, were also observable in the conventional NMR spectra. On the basis of the present NMR data, we conclude that the bait region of the native alpha-2-M is highly flexible and exposed to solvent. On treatment of alpha-2-M with methylamine, no significant change has been detected in the NMR spectra observed in both the conventional and CIDNP mode.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号