首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myotoxic and mutagenic aromatic amine, 1,2,4-triaminobenzene, has been shown to oxidise glutathione and reduced pyridine nucleotides in a cyclic reaction which generates both superoxide radical and hydrogen peroxide. It is suggested that the process is initiated by the triaminobenzene radical, formed by autoxidation of the amine. This, by mediating the one-electron oxidation of GSH and NAD(P)H, is able to establish a radical chain-reaction leading to the formation of GSSG and NAD(P)+. This reaction may be of significance in the pathogenesis of the toxic effects of 1,2,4-triaminobenzene, not only by forming reactive free-radicals but also by compromising cellular defences against oxidative attack.  相似文献   

2.
Glyceraldehyde and other simple monosaccharides autoxidise under physiological conditions generating 1-hydroxyalkyl (carbon-centred) free radicals and intermediates of dioxygen reduction: superoxide, hydrogen peroxide and hydroxyl radicals. The major glyceraldehyde-derived product is the alpha-ketoaldehyde, hydroxypyruvaldehyde. Close similarities between the temperature dependence of the kinetics of glyceraldehyde autoxidation and glyceraldehyde enolisation to an ene-diol indicates that enolisation is the rate-determining step in the autoxidative process. Inspection of a wide range of carbonyl compounds showed that the monosaccharide moiety -CH(OH)-C- is conserved in carbonyl compounds reactive towards autoxidation, indicating that the ability to form an ene-diol is a prerequisite to monosaccharide autoxidation. The ene-diol intermediate autoxidises rapidly to the products: hydrogen peroxide, water and alpha-ketoaldehydes: beta-hydroxypyruvaldehyde is produced from glyceraldehyde and dihydroxyacetone, glyoxal from glycolaldehyde autoxidation. Ene-diol autoxidation is catalysed by hydrogen peroxide and trace metal ion contaminants; removal of either of these factors sufficiently retards ene-diol autoxidation such that ene-diol autoxidation rather than enolisation becomes the rate determining step in the overall autoxidative process. Under enolisation control, the rate of monosaccharide autoxidation is influenced by pH and the buffer system used for pH control.  相似文献   

3.
A Rhodococcus sp. BPG-8 produces 1,2,4-benzenetriol during the transformation of resorcinol by phloroglucinol induced cell-free extract. The oxidation of 1,2,4-benzenetriol to 2-hydroxy-1,4-benzoquinone produces superoxide radicals that may have potential deleterious effects on cellular integrity. It has been shown that both superoxide dismutase (SOD) and catalase retard the autoxidation of 1,2,4-benzenetriol to 2-hydroxy-1,4-benzoquinone. Termination of the free radical chain reaction between superoxide radical and 1,2,4-benzenetriol seems to prevent this autoxidation. A NAD(P)H-dependent reductase appears to convert the 2-hydroxy-1,4-benzoquinone back to 1,2,4-benzenetriol. Both of these mechanisms appear to stabilize 1,2,4-benzenetriol so that it may be cleaved by meta cleavage enzymes. The enzymes responsible for the stabilization of 1,2,4-benzenetriol appear not to be inducible.  相似文献   

4.
Accompanying the autoxidation of hydroxylamine at pH 10.2, nitroblue tetrazolium was reduced and nitrite was produced in the presence of EDTA. The rate of autoxidation was negligible below pH 8.0, but sharply increased with increasing pH. The reduction of nitroblue tetrazolium was inhibited by superoxide dismutase, indicating the participation of superoxide anion radical in the autoxidation. Hydrogen peroxide stimulated the autoxidation and superoxide dismutase inhibited the hydrogen peroxide-induced oxidation, results which suggest the participation of hydrogen peroxide in autoxidation and in the generation of superoxide radical. An assay for superoxide dismutase using autoxidation of hydroxylamine is described.  相似文献   

5.
Two fluorescent heme degradation compounds are detected during autoxidation of oxyhemoglobin. These fluorescent compounds are similar to fluorescent compounds formed when hydrogen peroxide reacts with hemoglobin [E. Nagababu and J. M. Rifkind, Biochem. Biophys. Res. Commun. 247, 592-596 (1998)]. Low levels of heme degradation in the presence of superoxide and catalase are attributed to a reaction involving the superoxide produced during autoxidation. The inhibition of most of the degradation by catalase suggests that the hydrogen peroxide generated during autoxidation of oxyhemoglobin produces heme degradation by the same mechanism as the direct addition of hydrogen peroxide to hemoglobin. The formation of the fluorescent degradation products was inhibited by the peroxidase substrate, ABTS, which reduces ferrylhemoglobin to methemoglobin, indicating that ferrylhemoglobin is produced during the autoxidation of hemoglobin. It is the transient formation of this highly reactive Fe(IV) hemoglobin, which is responsible for most of the heme degradation during autoxidation.  相似文献   

6.
The hydrogen peroxide produced during the autoxidation of melanin pigments has been measured using an oxidase electrode. The autoxidation has been shown to occur via the superoxide intermediate. The melanin pigment competes with superoxide dismutase for the scavenging of superoxide radicals. However, superoxide dismutase at high concentrations caused a substantial increase in the production of hydrogen peroxide, formed during melanin autoxidation. The implications of this finding are discussed in light of melanin's ability to function as a pseudo-dismutase.  相似文献   

7.
These data suggest that iron(II) reactivity for a set of homologous spiroadamantyl 1,2,4-trioxolane, 1,2,4-trioxane, and 1,2,4-trioxepane peroxide heterocycles is a necessary, but insufficient, property of animalarial peroxides. Heme alkylation efficiency appears to give a more accurate prediction of antimalarial activity than FeSO4-mediated reaction rates, suggesting that antimalarial activity is not merely dependent on peroxide bond cleavage, but also on the ability of reactive intermediates to alkylate heme or other proximal targets.  相似文献   

8.
Catalase and glutathione peroxidase (GSHPX) react with red cell hydrogen peroxide. A number of recent studies indicate that catalase is the primary enzyme responsible for protecting the red cell from hydrogen peroxide. We have used flow cytometry in intact cells as a sensitive measure of the hydrogen-peroxide-induced formation of fluorescent heme degradation products. Using this method, we have been able to delineate a unique role for GSHPX in protecting the red cell from hydrogen peroxide. For extracellular hydrogen peroxide, catalase completely protected the cells, while the ability of GSHPX to protect the cells was limited by the availability of glutathione. The effect of endogenously generated hydrogen peroxide in conjunction with hemoglobin autoxidation was investigated by in vitro incubation studies. These studies indicate that fluorescent products are not formed during incubation unless the glutathione is reduced to at least 40% of its initial value as a result of incubation or by reacting the glutathione with iodoacetamide. Reactive catalase only slows down the depletion of glutathione, but does not directly prevent the formation of these fluorescent products. The unique role of GSHPX is attributed to its ability to react with hydrogen peroxide generated in close proximity to the red cell membrane in conjunction with the autoxidation of membrane-bound hemoglobin.  相似文献   

9.
The formation of dimers in the initial stage of methyl linoleate (ML) autoxidation was demonstrated. The oxidation profile of freshly prepared ML was followed by TLC during autoxidation by aeration at 30°C for 192 hr. After 24 hr of autoxidation, the peroxide value of ML was still 0.6, and two unknown polar spots appeared besides intact ML and methyl linoleate hydroperoxides (MLHPO). These two spots were identified as dimers by successive gel and high performance liquid Chromatographic separations and by molecular weight determination. The ratio of dimers/MLHPO reached a maximum (0.74) after 96 hr of autoxidation. This result indicates that the formation of dimers in the initial stage of autoxidation was slightly less than that of MLHPO. The dimers were linked through ?C?O?O?C? bonds and contained hydroperoxy and/or carbonyl groups and conjugated dienes.  相似文献   

10.
《Free radical research》2013,47(3-6):383-389
Autoxidation of 5–hydroxyprimaquine, a putative metabolite of the antimalarial primaquine, was studied by oxygen consumption and ESR spectroscopy. 5–Hydroxyprirnaquine undenvent fast autoxidation under mild conditions (pH 7.4-8. 5, 25°C. and presence of I mM diethylenetriamine pentaacetic acid); each mol of the drug consumed 0.75 mol of oxygen and formed 0.5 mol of hydrogen peroxide. Direct-ESR experiments demonstrated that 5–hydroxyprimaquine autoxidation was accompanied by generation of a drug-derived free radical that is oxygen sensitive. Generation of hydroxyl radical was also established by spin-trapping experiments in the presence of 5,5–dimethyl-l-pyrroline N-oxide. The effect of antioxidant enzymes on hydroxyl radical adduct yield and analysis of autoxidation stoichiometry suggest that the main route for hydroxyl radical generation is the iron-catalyzed reaction between the drug-derived free radical and hydrogen peroxide.  相似文献   

11.
The influence of the type and position of various functional groups in saturated glycerol-derived alkoxylipids on the kinetics of peroxide formation is studied. The autoxidation of the glycerol-derived compounds is compared with that of some structural analogs. As a rule, ethers are oxidized much faster than ether-esters and esters. Free hydroxy groups exert an accelerating effect on the rate of autoxidation.  相似文献   

12.
Cysteine inhibits growth of and protease production by Pseudomonas fluorescens NC3. Catalase activity in P. fluorescens NC3 was increased by cysteine. The addition of exogenous hydrogen peroxide did not increase catalase activity, thus suggesting a role for the endogenous generation of hydrogen peroxide via the autoxidation of cysteine.  相似文献   

13.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   

14.
Fourteen different broth media were autoclaved under anaerobic conditions and then exposed to atmospheric oxygen. The hydrogen peroxide and superoxide radical formation as well as the bactericidal effect of the media were studied. The rate of killing of Peptostreptococcus anaerobius VPI 4330-1 was high in media that rapidly autoxidized and accumulated hydrogen peroxide. In actinomyces broth (BBL), 50% of the cells were killed within 2 min, and in Brewer thioglycolate medium (Difco), 50% were killed within 11 min, whereas more than 50% of the cells survived for more than 2 h in Clausen medium (Oxoid), fluid thioglycolate medium (BBL), and thioglycolate medium without dextrose or indicator (Difco). Only media that contained phosphate and glucose had a tendency to accumulate hydrogen peroxide. A solution of phosphate and glucose autoxidized when it had been heated to 120 degrees C for at least 5 min and when the pH of the solution was higher than 6.5. Transitional metal ions catalyzed the autoxidation, but they were not necessary for the reaction to occur. Of the other substances heated in phosphate buffer, only alpha-hydroxycarbonyl compounds autoxidized with accumulation of hydrogen peroxide. Superoxide dismutase decreased the autoxidation rate of most of the broth media. This indicated that superoxide radicals were generated in these media.  相似文献   

15.
We demonstrate that the high concentration of transition metals in the substantia nigra could be a major factor responsible for the specificity of cell damage by the Parkinsonism-causing neurotoxin MPTP. It will be shown that these metals in vitro, and MPTP, each potentiate the autoxidation of dopamine and the production of aminochrome through the generation of superoxide, hydroxyl radicals, hydrogen peroxide and reactive semiquinones. Moreover, the same metals contribute to the oxidation of MPTP itself, further enhancing dopamine autoxidation.  相似文献   

16.
The water-soluble products of the UV-initiated autoxidation of linoleic and linolenic acids emulsified in water were separated into volatile and relatively involatile components, each of which reacted with both thiobarbituric acid (TBA) and peroxidase. The volatile TBA-reactive compound is probably malonaldehyde and the volatile peroxidase-reactive compound is hydrogen peroxide. Additional compounds which absorb UV light were present in the volatile fraction. After thin-layer chromatography of the involatile fraction, reactivity toward TBA and peroxidase was found in the same spot. Approximate molar yields of hydrogen peroxide, malonaldehyde, "hydroperoxides", and other TBA-reactive compounds were estimated. The ratio of "hydroperoxide" to TBA reactivity was lower for linoleic than for linolenic acid. The mass of relatively involatile compounds was about 20 times greater than that predicted from either peroxidase or TBA assays of water extracts of oxidized linolenic acid. The properties of the water extract were similar to those shown by others for the products of prolonged autoxidation (without UV-irradiation) of emulsified methyl linoleate.  相似文献   

17.
Spectral evidence is presented which shows that penicillamine is able to initiate the formation of the oxidized intermediates of myeloperoxidase in the absence of exogenous hydrogen peroxide. The autoxidation of penicillamine presumably produces superoxide which dismutates spontaneously to form hydrogen peroxide. Thus, the formation of both compounds II and III of myeloperoxidase was observed. We also report that penicillamine can directly reduce cytochrome c and therefore, it could possibly act as a one-electron donor to myeloperoxidase.  相似文献   

18.
Caffeic acid (5-200 mkM) reduces cytochrome c during autoxidation in potassium phosphate buffer, pH 7-8. The reduction is inhibited by superoxide dismutase, which suggests generation of superoxide anion radicals. The generation rate is 0.028-0.115 mkmoles O2- per min. Superoxide appears to be a side product of the reaction, since the autoxidation of caffeic acid itself (followed by A420) is not inhibited by superoxide dismutase. The autoxidation is accompanied by oxygen of consumption. An addition of catalase results in liberation of some part of consumed oxygen, this being indicative of accumulation of hydrogen peroxide. Caffeic acid is known to be responsible for the resistance of plants to parasites because of its toxicity. This function presumably depends on superoxide or other reactive oxygen species.  相似文献   

19.
Kinetic analysis and mechanistic aspects of autoxidation of catechins   总被引:3,自引:0,他引:3  
A peroxidase-based bioelectrochemical sensor of hydrogen peroxide (H(2)O(2)) and a Clark-type oxygen electrode were applied to continuous monitoring and kinetic analysis of the autoxidation of catechins. Four major catechins in green tea, (-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate, were used as model compounds. It was found that dioxygen (O(2)) is quantitatively reduced to H(2)O(2). The initial rate of autoxidation is suppressed by superoxide dismutase and H(+), but is independent of buffer capacity. Based on these results, a mechanism of autoxidation is proposed; the initial step is the one-electron oxidation of the B ring of catechins by O(2) to generate a superoxide anion (O(2)(*-)) and a semiquinone radical, as supported in part by electron spin resonance measurements. O(2)(*-) works as a stronger one-electron oxidant than O(2) against catechins and is reduced to H(2)O(2). The semiquinone radical is more susceptible to oxidation with O(2) than fully reduced catechins. The autoxidation rate increases with pH. This behavior can be interpreted in terms of the increase in the stability of O(2)(*-) and the semiquinone radical with increasing pH, rather than the acid dissociation of phenolic groups. Cupric ion enhances autoxidation; most probably it functions as a catalyst of the initial oxidation step of catechins. The product cuprous ion can trigger a Fenton reaction to generate hydroxyl radical. On the other hand, borate ion suppresses autoxidation drastically, due to the strong complex formation with catechins. The biological significance of autoxidation and its effectors are also discussed.  相似文献   

20.
During autoxidation of 1,4-hydroquinone (H2Q, less than 1 mM) at pH 7.4 and 37 degrees C, stoichiometric amounts of 1,4-benzoquinone (Q) and hydrogen peroxide were formed during the initial reaction. The reaction kinetics showed a significant induction period which was abolished by minute amounts of Q. Hydrogen peroxide and catalase were without effect on the autoxidation process. Transition metals apparently were not involved, since chelators like EDTA, DETAPAC, and desferrioxamine or FeSO4 had no influence on the autoxidation kinetics. Superoxide dismutase (SOD) did not abolish the induction period but dramatically enhanced the autoxidation rate by more than two orders of magnitude. The stimulatory effect was first-order in SOD concentration but showed saturation kinetics. The dependence of Q and hydrogen peroxide formation rates on H2Q concentration shows a biphasic behaviour: dependence on the square at low H2Q, but on the square root at high H2Q concentration. As revealed by calculatory simulations the results can be adequately described by the known reaction rate constants. The reaction starts with the comproportionation of H2Q and Q to yield two semiquinone molecules which autoxidize to give two superoxide radicals and two molecules of Q which enter into a new cycle of comproportionation. Because of unfavourable equilibria the autocatalytic reaction soon comes to steady state, and the further reaction is governed by the rate of superoxide removal. At excess SOD, the comproportionation reaction is rate-limiting, thus explaining the saturation effects of SOD. The experiments do not allow a decision between the two functions of SOD; the conventional action as a superoxide:superoxide oxidoreductase or as a semiquinone:superoxide oxidoreductase. In the latter reaction SOD is thought to be reduced by semiquinone with Q formation. In the second step the reduced enzyme would be re-oxidized by a superoxide radical which is formed during autoxidation of the second semiquinone molecule generated in the comproportionation reaction. From thermodynamic considerations, the latter function of SOD appears to be plausible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号