首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different inocula with high yeast concentration were investigated as a means of overcoming the inhibitory effect of furfural in ethanol fermentation. In order to verify the toxicity of the furfural, a series of fermentation runs were made with 0.25, 5.50, and 9.00 g/L (dry weight) ofSaccharomyces cerevisiae inoculum and 1, 3, and 5 g/L of furfural. The extent of cell death occurring in the early phase of fermentation was dependent on the initial cell concentration. With high initial yeast concentration, the effect of furfural is canceled, because it is depleted at an early stage of fermentation. The ethanol weight yield averaged 0.45 on the basis of sugar consumed. The ethanol productivity and specific growth rate decreased with the increase of furfural concentration, and the inhibitory effect almost disappeared with high cell concentration (9 g/L). Mathematical models were developed that relate productivity and growth rate with furfural and cell concentration.  相似文献   

2.
Marine microalgae were studied as potential resources for the production of biodiesel. Five marine microalgae, Tetraselmis suecica, Phaeodactylum tricornutum, Chaetoceros calcitrans, Isochrysis galbana, and Nannochloropsis oculata were cultured in f/2 media, 12:12 L:D cycle at 20 ± 1°C with a light intensity of 36.3 μmol/m2/sec using a 15-L circular cylindrical photobioreactor. The dry cell weight, specific growth rate, biomass productivity, oil content and fatty acid composition of palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid of microalgae were determined. T. suecica, I. galbana, and N. oculata showed high dry cell weights of 0.58, 0.57, and 0.57 g/L, respectively. The culture period of T. suecica to reach the stationary phase was 9 days. On the other hand, N. oculata showed the longest culture period of 28 days to reach the stationary phase. T. suecica absorbed nitrate at the initial stages of cell growth, decreasing the nitrate concentration to 0.5 mg/L on day-7 of the culture. The highest oil contents were observed in P. tricornutum with a 25.31% dry cell weight and I. galbana with a 23.15% dry cell weight on day-9 after the stationary phase. I. galbana showed 417.33 mg of palmitic acid per g oil and T. suecica showed 235.61 mg of oleic acid per g oil. Stearic acid, linoleic acid, and linolenic acid did not exceed 30.02 mg/g oil in any of the microalgae. T. suecica showed the shortest culture period of 9 days to reach the stationary phase. Therefore, the highest biomass production of 0.58 g/L was obtained and I. galbana showed high biomass production of 0.57 g/ L and oil content of 23.15% of dry cell weight. Therefore, T. suecica and I. galbana can be selected as a potential candidate for the production of biodiesel.  相似文献   

3.
Petiole explants of centella plants (Centella asiatica L. Urban) were cultured on Murashige and Skoog (MS) solid medium containing 20 g/L sucrose, supplemented with 1.0 mg/L benzylaminopurine and 1.0 mg/L naphthaleneacetic acid for callus production. To establish a cell suspension culture, 2 g of fresh callus was cultured in 50 mL of the same medium but without solid agent at a 100 rpm agitation speed. Every 2 g of culture was subcultured in fresh MS liquid medium for maintenance. After 24 days of culture at a 120 rpm agitation speed, the centella cell biomass reached a maximum of 9.03 g/50 mL on the same MS medium with 30 g/L sucrose and a 3 g inoculum size. A high performance liquid chromatography analysis showed that asiaticoside content in 24-day old suspension cultured cells (45.35 mg/g dry weight) was significantly higher (4.5 fold) than that of in planta leaves (10.55 mg/g dry weight).  相似文献   

4.
Summary Recycled immobilized cells of Kluyveromyces fragilis ATCC 28244 were used for repeated batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum ethanol concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry wt. immobilized cell/l bead volume. The maximum ethanol production rate was 13.5 g ethanol/l bioreactor volume/h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at 96% of the theoretical for all 11 batch runs, while the maximum ethanol production rate during the last batch run was found to be 70% of the original ethanol rate obtained in the first batch run.  相似文献   

5.
Phloroglucinol is a valuable chemical which has been successfully produced by metabolically engineered Escherichia coli. However, the low productivity remains a bottleneck for large-scale application and cost-effective production. In the present work, we cloned the key biosynthetic gene, phlD (a type III polyketide synthase), into a bacterial expression vector to produce phloroglucinol in E. coli and developed different strategies to re-engineer the recombinant strain for robust synthesis of phloroglucinol. Overexpression of E. coli marA (multiple antibiotic resistance) gene enhanced phloroglucinol resistance and elevated phloroglucinol production to 0.27 g/g dry cell weight. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) level through coordinated expression of four acetyl-CoA carboxylase (ACCase) subunits increased phloroglucinol production to around 0.27 g/g dry cell weight. Furthermore, the coexpression of ACCase and marA caused another marked improvement in phloroglucinol production 0.45 g/g dry cell weight, that is, 3.3-fold to the original strain. Under fed-batch conditions, this finally engineered strain accumulated phloroglucinol up to 3.8 g/L in the culture 12 h after induction, corresponding to a volumetric productivity of 0.32 g/L/h. This result was the highest phloroglucinol production to date and showed promising to make the bioprocess economically feasible.  相似文献   

6.
盐单胞菌(Halomonas)能够利用多种底物为碳源生长,由于其能在高盐条件下进行不灭菌的开放发酵,已被开发用作下一代生物技术的底盘细胞.包括乙酸、丙酸和丁酸在内的短链挥发性脂肪酸能够以生物质为原料制备,有望成为用于微生物发酵的新型碳源.利用10-50g/L浓度的丁酸为碳源对Halomonas sp.TD01和TD08...  相似文献   

7.
Summary High cell density and rosmarinic acid (RA) productivity have been achieved by applying periodic culture perfusion to the Anchusa officinalis cell suspension. In this study, the effect of inoculum size on cell growth and RA productivity in the perfused Anchusa culture was investigated. Experimental results showed that RA productivity increased with the inoculum size, up to 4 g dry weight/L. Further increases in the inoculum size did not yield a higher RA productivity regardless of culture perfusion. Moreover, the maximum cell concentration was not affected by the inoculum sizes, from 1 to 11 g dry weight/L. Cell crowding, indicated by high culture packed cell volumes, is believed to be the predominant cause of low productivity in perfused cultures with high inoculum sizes.  相似文献   

8.
Summary Batch cultures of tobacco cells induced from Nicotiana tabacum L. cv. Bright Yellow-2 were carried out under oxygen-limited conditions using sucrose as the sole carbon source. Maintenance coefficients for sugar, m, and for oxygen, mO, were 0.02 mmol glucose/g cell dry weight/h and 0.09 mmol O2/g cell dry weight/h, and true growth yields for sugar, YG, and for oxygen, YGO, were 107 g cell dry weight/mol glucose and 61 g cell dry weight/mol O2, respectively.Balance equations based on electrons available from the culture suggested that the carbon-substrate consumed by the cells might be metabolized mainly in biosynthetic processes without the excretion of extracellular products.  相似文献   

9.
A recombinant Pichia pastoris MutS expressing SAM2 gene of Saccharomyces cerevisiae was cultured for S-adenosylmethionine (SAM) accumulation. Effect of the amount of methanol added (0.5%, 1.0%, 2.0%, 3.0%, 4.0%, 6.0%, 10.0%, and 12.0%) and cell densities (9.57, 13.47, 21.74, 30.90, and 41.24 g/L dry cell weight (DCW)) on yield of SAM was found in flask cultivations. In flask experiments, maximal yield of SAM (1.29 g/L) was obtained at 2.0% methanol added and 30.90 g/L DCW which gave the maximal methanol consumption rate. Conjunct effect of amount of methanol added and cell density was found through Origin 7.0 (7.0 Microcal, USA). Scale up in 3.7 L bioreactor, 51% specific yield of SAM was enhanced at 0.6% methanol compared to that of 0.1% methanol. In fed-batches of different cell densities at 0.6% methanol, maximal yield of SAM was 8.66 g/L at 100 g/L DCW with 64% yield of SAM enhanced again. Methanol consumption rate at 100 g/L DCW was 4.81 mL/L h. Maintenance coefficient of 100 g/L DCW was lower than that of others significantly, although methanol consumption rate of 90 g/L DCW was higher (5.07 mL/L h) than that of 100 g/L DCW.  相似文献   

10.
This study examined the effect of adding glucose, yeast extract, and inorganic salts to swine wastewater (SWW) in a batch culture on the production of a biodegradable plastic, polyhydroxyalkanoate (PHA). A bacterial strain, Azotobacter vinelandii UWD, was used to produce PHA without limiting the non-carbon nutrients. The addition of glucose (30 g/L) to the SWW medium increased the level of cell growth (4.4∼7.0 times) and PHA production (3.8∼8.5 times) depending upon the dilution of SWW. A 50% dilution of SWW was found to be optimal considering the dry cell weight (9.40 g/L), PHA content (58 wt%), and hydroxyvalerate (HV) mol fraction in the PHA (4.3 mol%). A 75% SWW medium was more advantageous for producing PHA with a higher HV fraction (7.1 mol%) at the expense of losing 22% of PHA production. The undiluted SWW medium produced less than one third of the PHA compared with the 50% SWW medium, but the HV fraction was the highest (10.8 mol%). Regarding the effect of the glucose concentration, at 20 g/L glucose, the dry cell weight and level of PHA production increased to 9.34 g/L (0.63 g PHA/g dry cell weight) and 5.90 g/L, respectively. At 50 g/L glucose, there was no significant increase in PHA production. For the glucose-supplemented (30 g/L) 50% SWW medium, the addition of a nitrogen source (1 g/L of yeast extract) did not increase the level of cell growth or PHA production because the C:N ratio (23:1) was already close to the optimal value (22:1). Better aeration increased the productivity of PHA. External nitrogen supplements (1 g/L of yeast extract) and other essential mineral salts was not necessary for bacterial growth because they were contained in the SWW. These results suggest that SWW is an excellent feedstock for producing larger amounts of the value-added material, PHA, if it is combined with carbohydrate-rich organic waste.  相似文献   

11.
The optimization of culture conditions for the bacteriumPseudomonas aeruginosa BYK-2 KCTC 18012P, was performed to increase its rhamnolipid production. The optimum level for carbon, nitrogen sources, temperature and pH, for rhamnolipid production in a flask, were identified as 25 g/L fish oil, 0.01% (w/v) urea, 25 and pH 7.0, respectively. Optimum conditions for batch culture, using a 7-L jar fermentor, were 200 rpm of agitation speed and a 2.0 L/min aeration rate. Under the optimum conditions, on fish oil for 216 h, the final cell and rhamnolipid concentrations were 5.3 g/L and 17.0 g/L respectively. Fed-batch fermentation, with different feeding conditions, was carried out in order to increase, cell growth and rhamnolipid production by thePseudomonas aeruginosa, BYK-2 KCTC 18012P. When 2.5 g of fish oil and 100 mL basal salts medium, containing 0.01% (w/v) urea, were fed intermittently during the fermentation, the final cell and rhamnolipid concentrations at 264 h, were 6.1 and 22.7 g/L respectively. The fed-batch culture resulted in a 1.2-fold increase in the dry cell mass and a 1.3-fold increase in rhamnolipid production, compared to the production of the batch culture. The rhamnolipid production-substrate conversion factor (0.75 g/g) was higher than that of the batch culture (0.68 g/g).  相似文献   

12.
Microalgal biomass was hydrolyzed using a solid acid catalyst with the aid of liquid acid. The use of solid acid as the main catalyst instead of liquid acid was to omit subsequent neutralization and/or desalination steps, which are commonly required in using the resulting hydrolysates for microbial fermentation. The hydrolysis of 10 g/L of lipid-extracted Chlorella vulgaris containing 12.2% carbohydrates using 7.6 g/L Amberlyst 36 and 0.0075 N nitric acid at 150°C resulted in 1.08 g/L of mono-sugars with a yield of 88.5%. For hydrolysis of higher concentrations of the biomass over 10 g/L, the amount of Amberlyst 36 needed to be increased in proportion to the biomass concentration to maintain similar levels of hydrolysis performance. Increasing the solid acid concentration protected the surface of the solid acid from being severely covered by cell debris during the reaction. A hydrolysate of lipid-extracted C. vulgaris 50 g/L was used, with no post-treatment of desalination, for the cultivation of Klebsiella oxytoca producing 2,3-butanediol. Cell growth in the hydrolysate was found to be almost the same as in the conventional medium with the same monosaccharide composition, confirming its fermentation compatibility. It was noticeable that the yield of 2,3-butanediol with the hydrolysate was observed to be 2.6 times higher than that with the conventional medium. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2729, 2019  相似文献   

13.
Summary A method to estimate the glucose concentration in the culture broth using CO2 evolution rate (CER) data from a mass spectrometer was developed.Alcaligenes eutrophus was cultivated to produce poly(3-hydroxybutyric acid) (PHB) from tapioca hydrolysate using this method. Thek value (g glucose/mol CO2), defined as the glucose consumption per CO2 evolution, decreased with culture time and was automatically changed using CER data. The glucose concentration in the culture broth could be controlled at 10 to 20 g/L. A final cell concentration of 106 g/L, PHB concentration of 61 g/L. and PHB content of 58 % of dry cell weight were obtained after 59 h of cultivation.  相似文献   

14.
Changes in lipid class, fatty acid composition, protein, and dry and wet weights of fertilized eggs and developing larvae of striped bass (Morone saxatilis) fed with the live food, Artemia, were investigated. A decrease of wet and dry weights and moisture was observed at the beginning of the larval stage. Larvae regained the original moisture level, and wet and dry weights increased steadily after feeding. Total lipids decreased from 190 μg/egg in fertilized eggs to 151 μg/egg during hatching and increased after feeding. When total lipid contents were expressed as a percentage of larval dry weight, a decline of lipid did not occur until after feeding. Total protein, on the other hand, increased right after feeding, but there was some variation between days. Polar lipids increased significantly from 20 μg/egg at the egg stage to 199 μg/larva at 26 days post-hatching (DPH), 2 days before the onset of metamorphosis, while neutral lipids declined from 175 μg/egg to 80 μg/larva during the same time period. Wax/steryl esters decreased from 150 μg/egg in fertilized eggs to 32 μg/larva at 26 DPH. Triacylglycerols dropped from 21 μg/egg to 15 μg/larva before feeding and increased gradually after feeding. In contrast, the level of cholesterol increased 2–3-fold. There was a significant increase of phospholipids, particularly phosphatidylcholine in larvae after feeding. The fatty acid composition of fish larvae was significantly influenced by the diet, Artemia. There was an indication of catabolism of endogenous eicosapentaenoic and docosahexaenoic acids during metamorphosis.  相似文献   

15.
16.
Rosmarinic acid production by Lavandula vera MM cell-suspension culture   总被引:1,自引:0,他引:1  
The time courses of growth and rosmarinic acid production by Lavandula vera MM cell suspension were investigated. The uptake of the main nutrients (sucrose, nitrogen, phosphorus, K, Ca, Mg) was followed during cultivation and the data on the physiology of the L. vera MM cell culture are presented. It was established that the cell culture synthesizes rosmarinic acid during the linear phase of growth for a relatively short period (between the 4th and 8th days of cultivation). The influence of sucrose concentration in the nutrient medium on cell growth and accumulation of rosmarinic acid by L. vera MM cell culture was investigated. The results showed that 7% sucrose in the nutrient medium ensured a steady growth of the cell suspension and increased the yield of rosmarinic acid (29.2 g/l dry biomass and 507.5 mg/l rosmarinic acid compared to 13.0 g/l dry biomass and 68.6 mg/l rosmarinic acid for the control cultivation with 3% sucrose). Received: 17 September 1996 / Received revision: 31 January 1997 / Accepted: 1 February 1997  相似文献   

17.
Abstract

Pullulan is an extracellular water-soluble polysaccharide with wide applications. In this study, we screened strains that could selectively produce high molecular weight pullulan for application in industrial pullulan production. A new fungus strain A4 was isolated from soil and identified as Aureobasidium melanogenum based on colony characteristics, morphology, and internally transcribed spacer analysis. Thin-layer chromatography, Fourier-transform infrared spectroscopy, and nuclear magnetic resonance analysis suggested that the dominant exopolysaccharide produced by this strain, which presented a molecular weight of 1.384?×?106 Dalton in in-gel permeation chromatography, was pullulan. The culture conditions for A. melanogenum A4 were optimized at 30?°C and 180?rpm: carbon source, 50?g/L maltose; initial pH 7; and 8?g/L Tween 80. Subsequently, batch fermentation was performed under the optimized conditions in a 5-L stirred-tank fermentor with a working volume of 3?L. The fermentation broth contained 303?g/L maltose, which produced 122.34?g/L pullulan with an average productivity of 1.0195?g/L/h and 82.32?g/L dry biomass within 120?h. The conversion efficiency of maltose to pullulan (Y%) and specific production rate (g/h/g dry cells) (Qs) reached 40.3% and 0.0251?g/L/g dry cells, respectively. The results showed strain A4 could be a good candidate for industrial production.  相似文献   

18.
The growth and level of xanthophylls of several representative species of green algae were investigated as a possible source of pigmentation for the egg yolk and broiler markets. Chlorella pyrenoidosa 7-11-05 was selected for fermentation studies because of its high level of xanthophylls and wide temperature range for growth. The heterotrophic metabolism was preferred because of the ease of adaptability to present fermentation equipment. When used as the sole carbon source, glucose was the only sugar, among many tested, that gave appreciable growth in illuminated shaken flasks. A dry cell weight of 90 g per liter and total xanthophylls of 450 mg per liter were obtained from 190 g per liter of glucose monohydrate in 168-hr illuminated shaken flasks. Higher levels of glucose decreased yields. In combination with glucose, monosaccharides, such as fructose and galactose, were readily assimilated. The 7-11-05 strain was adapted to galactose as the sole carbon source after six vegetative passages. Light of the proper intensity and duration stimulated total xanthophylls approximately 35%. The effect on dry cell weight and total xanthophylls of seven antibiotics added at various levels in shaken flasks was studied. Erythromycin was essentially stable throughout the fermentation and nontoxic up to 25 μg/ml, with only slight toxicity at higher levels. Both erythromycin and ristocetin were effective in controlling a high incidence of bacterial contamination in 30-liter fermentors. With the higher agitation and aeration rates possible in 30-liter fermentors, dry cell weights in excess of 100 g per liter and total xanthophylls of 467 to 512 mg per liter were readily obtained from 230 to 260 g per liter of glucose in 162-hr illuminated batch-type fermentations. Continuous-feed runs yielded a dry cell weight of 302 g per liter and total xanthophylls of 650 mg per liter from 520 g per liter of glucose. The type of Chlorella cell produced was an important consideration with respect to the availability of the xanthophylls in pigmenting egg yolks and broilers.  相似文献   

19.
Summary Near-infrared spectroscopy was used to determine biomass and glycerol concentrations in E.coli whole broth fermentation samples. For dry cell weight, a standard error of prediction (SEP) of 0.2 g/L and correlation coefficient (r) of 0.991 were obtained. The SEP and r for glycerol, carbon nutrient, were 0.3 g/L and 0.979. respectively. Off-line analysis was accomplished within 2 minutes of sampling and therefore provides the opportunity to monitor fermentations quickly enough to permit in-process development and troubleshooting.  相似文献   

20.
Mycelium of Leptosphaeria maculans survived on oilseed rape stem base debris buried in sand for 2,4, 6, 8,10 or 12 months and produced pseudothecia after subsequent exposure on the surface of the ground under natural conditions for 2–4 months, but did not survive on upper stem debris buried for 2 months. Only A‐group L. maculans ascospores were produced on the stem base debris which had been buried; no B‐group ascospores were produced. Mycelium of L. maculans survived on both stem base and upper stem debris exposed on the sand surface for 2, 4, 6, 8, 10 or 12 months and pseudothecia with viable ascospores were observed at the time of sampling. Both A‐group L. maculans (predominant on stem bases) and B‐group L. maculans (predominant on upper stems) ascospores were produced on unburied stem base and upper stem debris. Thus B‐group L. maculans survived longer on unburied debris than on buried debris. A‐group ascospores which were exposed in dry air in darkness at 5–20°C survived longer than B‐group ascospores; 10–37% of A‐group ascospores, compared with 2–31% of B‐group ascospores, survived after 35 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号