首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigated the oxidative injury to human red blood cells (RBCs) by the exposure to exogenous malondialdehyde (MDA), in a physiological environment. When a 10% RBC suspension was incubated in autologous plasma, in the presence of 50 &#117 &#119 M MDA, 30% of MDA entered into the cells. A time-course study showed that MDA caused early (30-120 &#117 min) and delayed (3-18 &#117 h) effects. MDA caused a fast depletion of reduced glutathione, and loss of the glucose-6-phosphate dehydrogenase activity, followed by a decrease of HbO 2 . Accumulation of methemoglobin, and formation of small amounts of hemichrome were later evident. Also, an HbO 2 -derived fluorescent product was measured in the membrane. The redox unbalance was followed by structural and functional damage to the membrane, evident as the formation of conjugated diene lipid hydroperoxides, concurrent with a sharp accumulation of MDA, consumption of membrane vitamin E, and egress of K + ions. SDS--PAGE of membrane proteins showed formation of high molecular weight aggregates. In spite of the marked oxidative alterations, the incubation plasma prevented a substantial hemolysis, even after a 18 &#117 h incubation. On the contrary, the exposure of RBCs to 50 &#117 &#119 M MDA in glucose-containing phosphate saline buffer, resulted in a 16% hemolysis within 6 &#117 h. These results indicate that the exposure to MDA causes a rapid intracellular oxidative stress and potentiates oxidative cascades on RBCs, resulting in their dysfunction.  相似文献   

2.
The purpose of this study was to determine if differences in antioxidant status between the red blood cells (RBCs) of sickle cell anemia (SCA) patients and controls are responsible for the differential responses to oxidative and osmotic stress-induced hemolysis. Susceptibility to hemolysis was examined by incubating oxygenated and deoxygenated RBCs at 37°C with 73 mM 2,2' azobis (2-amidinopropane) HC1 (AAPH), a peroxyl radical generator, for up to 3.5 hours. The ability of RBCs to maintain membrane integrity under osmotic stress was determined over a range of diluted saline-phosphate buffer. Sickled RBCs showed a lesser degree of AAPH-induced hemolysis than control groups and were more resistant to osmotic stress-induced hemolysis. SCA patients had higher levels of RBC vitamin E and RBC lipids, but lower RBC GSH, plasma lipids and plasma carotenes than those of the hospital controls. No significant differences were observed in the levels of retinol, vitamin C, vitamin E, MDA and conjugated dienes in plasma, or the levels of MDA and conjugated dienes in RBCs. The results obtained suggest that the differences in antioxidant status between sickled RBCs and controls do not appear to be responsible for their different susceptibility to oxidative or osmotic stress-induced hemolysis observed.  相似文献   

3.
《Free radical research》2013,47(9):710-717
Abstract

The protecting ability of the Piper betle leaves-derived phenol, allylpyrocatechol (APC) against AAPH-induced membrane damage of human red blood cells (RBCs) was investigated. Compared to control, AAPH (50 mM) treatment resulted in significant hemolysis (55%, p < 0.01), associated with increased malondialdehyde (MDA) (2.9-fold, p < 0.001) and methemoglobin (6.1-fold, p < 0.001) levels. The structural deformation due to membrane damage was confirmed from scanning electron microscopy (SEM) images and Heinz bodies formation, while the cell permeability was evident from the K+ efflux (28.7%, p < 0.05) and increased intracellular Na+ concentration (8%, p < 0.05). The membrane damage, due to the reduction of the cholesterol/phospholipids ratio and depletion (p < 0.001) of ATP, 2,3-DPG by ?44–54% and Na+–K+ ATPase activity (43.7%), indicated loss of RBC functionality. The adverse effects of AAPH on all these biochemical parameters and the resultant oxidative hemolysis of RBCs were significantly reduced by pretreating the cells with APC (7 μM) or α-tocopherol (50 μM) for 1 h, prior to incubation with AAPH.  相似文献   

4.
The cyanidin-3- O - β-glucopyranoside (C-3-G) antioxidant capacity towards reactive oxygen species (ROS)-mediated damages was assessed in tissue and cells submitted to increased oxidative stress. In the isolated ischemic and reperfused rat heart, 10 or 30 μM C-3-G protected from both lipid peroxidation (66.7 and 94% inhibition of malondialdehyde (MDA) generation in 10 and 30 μM C-3-G-reperfused hearts, respectively, in comparison with control reperfused hearts) and energy metabolism impairment (higher ATP concentration in 10 and 30 μM C-3-G-reperfused hearts than in control reperfused hearts). These effects were associated to C-3-G permeation within myocardial cells, as indicated by results obtained in the isolated rat heart perfused for 30 min in the recirculating Langendorff mode under normoxia with 10 and 30 μM C-3-G. Protective effects were exerted, in a dose-dependent manner, by C-3-G also in 2 mM hydrogen peroxide-treated human erythrocytes. With respect to MDA formation, an apparent IC 50 of 5.12 μM was calculated for C-3-G (the polyphenol resveratrol used for comparison showed an apparent IC 50 of 38.43 μM). The general indications are that C-3-G (largely diffused in dietary plants and fruits, such as pigmented oranges very common in the Mediterranean diet) represents a powerful natural antioxidant with beneficial effects in case of increased oxidative stress, and at pharmacological concentrations it is able to decrease tissue damages occurring in myocardial ischemia and reperfusion.  相似文献   

5.
Tamir Kanias 《Cryobiology》2009,58(2):232-239
One of the recent approaches to enhance desiccation tolerance in red blood cells (RBCs) is by loading trehalose. This process has been shown to increase the recovery of lyophilized RBCs; conversely, it results in cellular damage including hemoglobin oxidation and loss of membrane integrity. The purpose of this study was to further investigate the extent of oxidative injury during the loading of trehalose into RBCs.RBCs were incubated in the absence (control) or presence of trehalose (0.8 mol/l) at 4 °C or 37 °C for different time scales. Oxidative damage was monitored by flow cytometry using dichlorofluorescin for reactive oxygen species formation, Annexin V-FITC for phosphatidylserine translocation and fluorescein-DHPE for lipid peroxidation. Percent methemoglobin, percent hemolysis and thiobarbituric acid reactive substances were measured by spectrophotometry. The extent of oxidative damage during trehalose loading is affected by the incubation temperature, incubation time and the presence of trehalose. Incubation at 4 °C was relatively innocuous; however, oxidative injury was evident at 37 °C in both RBC groups. The addition of trehalose is correlated with high osmotic pressure, which had minor effects during incubation at 4 °C, but seemed to have exacerbated the severity of cellular injury at 37 °C, as measured by higher levels of hemolysis, methemoglobin and lipid peroxidation.The process of trehalose-loading is problematic due to its requirement for prolonged incubations at 37 °C. These conditions are correlated with oxidative injury, even in the absence of trehalose. While trehalose is believed to be crucial for stabilizing biomembranes, the consequences of its introduction into the cells require further investigation.  相似文献   

6.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

7.
Cadmium (Cd) is a non-redox toxic heavy metal present in the environment and induces oxidative stress in plants. We investigated whether exogenous nitric oxide (NO) supplementation as sodium nitroprusside (SNP) has any ameliorating action against Cd-induced oxidative damage in plant roots and thus protective role against Cd toxicity. Cd treatment (50 or 250 μM) alone or in combination with 200 μM SNP was given to hydroponically grown wheat roots for a short time period of 24 h and then these were shifted to distilled water to observe changes in levels of oxidative markers (lipid peroxidation, H2O2 content and electrolyte leakage). Supplementation of Cd with SNP significantly reduced the Cd-induced lipid peroxidation, H2O2 content and electrolyte leakage in wheat roots. It indicated a reactive oxygen species (ROS) scavenging activity of NO. However, even upon removal of Cd-treatment solution, the levels of oxidative markers increased during 24 h recovery stage and later at 48 h these decreased. Cd treatment resulted in an upregulation of activities of antioxidant enzymes—superoxide dismutase (SOD, 1.15.1.1), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6), and glutathione reductase (GR, 1.6.4.2). SNP supply resulted in a reduction in Cd-induced increased activities of scavenging enzymes. The protective role of exogenous NO in decreasing Cd-induced oxidative damage was also evident from the histochemical localization of lipid peroxidation, plasma membrane integrity and superoxides. The study concludes that an exogenous supply of NO protects wheat roots from Cd-induced toxicity.  相似文献   

8.

Background

Secretory Apolipoprotein J/Clusterin (sCLU) is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs) remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence.

Methodology/Principal Findings

By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking), in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation.

Conclusions/Significance

We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.  相似文献   

9.
The cytologically active secondary lipid peroxidation products, malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) have been detected as their2, 4-dinitro-phenylhydrazone (DNP) derivatives in plant tissue cultures using LC-MS. This paper reports, for the first time, the use of LC-MS methodology to definitively identify 4-hydroxy-2-nonenal in plants. Limits of detection for the two derivatives are approximately 5pmol (1.2 × 10-9g; 1μM) and O.1pmol (3 × 10-l1g; 20nM) respectively. Mass spectrometer response was linear in the range from 2-200μM DNP-MDA and 0.02-10μM DNP-HNE.

This methodology has been used to assess the formation of aldehydic secondary lipid peroxidation products in dedifferentiated callus cultures of Daucus carota. The finding that profiles of MDA and HNE can be correlated with embryogenic competence is of considerable interest as oxidative status has already been implicated as a regulatory factor in animal development.  相似文献   

10.
Cells under aerobic condition are always threatened with the insult of reactive oxygen species, which are efficiently taken care of by the highly powerful antioxidant systems of the cell. The erythrocytes (RBCs) are constantly exposed to oxygen and oxidative stress but their metabolic activity is capable of reversing the injury under normal conditions. In vitro hemolysis of RBCs induced by 5, 10 and 20 mM glucose was used as a model to study the free radical induced damage of biological membranes in hyperglycemic conditions and the protection rendered by vitamin E on the same. RBCs are susceptible to oxidative damage, peroxidation of the membrane lipids, release of hemoglobin (hemolysis) and alteration in activity of antioxidant enzymes catalase and superoxide dismutase. The glucose induced oxidative stress and the protective effect of vitamin E on cellular membrane of human RBCs manifested as inhibition of membrane peroxidation and protein oxidation and restoration of activities of superoxide dismutase and catalase, was investigated.Thiobarbituric acid reactive substances are generated from decomposition of lipid peroxides and their determination gives a reliable estimate of the amount of lipid peroxides present in the membrane. Vitamin E at 18 μg/ml (normal serum level) strongly enhanced the RBC resistance to oxidative lysis leading to only 50–55% hemolysis in 24 h, whereas RBCs treated with 10 and 20 mM glucose without vitamin E leads to 70–80% hemolysis in 24 h. Levels of enzymic antioxidants catalase, superoxide dismutase and nonenzymic antioxidants glutathione showed restoration to normal levels in presence of vitamin E. The study shows that vitamin E can protect the erythrocyte membrane exposed to hyperglycemic conditions and so a superior antioxidant status of a diabetic patient may be helpful in retarding the progressive tissue damage seen in chronic diabetic patients.  相似文献   

11.
The protective effect of melatonin against lipopolysaccharide (LPS)-induced oxidative damage was examined in vitro. Lung, liver, and brain malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HDA) concentrations were measured as indices of induced membrane peroxidative damage. Homogenates of brain, lung, and liver were incubated with LPS at concentrations of either 1, 10, 50, 200, or 400μg/ml for 1 h and, in another study, LPS at a concentration of 400 μg/ml for either 0, 15, 30, or 60 min. Melatonin at increasing concentrations from 0.01–3 mM either alone or together with LPS (400μg/ml) was used. Liver, brain, and lung MDA + 4-HDA levels increased after LPS at concentrations of 10, 50, 200 or 400 μg/ml; this effect was concentration-dependent. The highest levels of lipid peroxidation products were observed after tissues were incubated with an LPS concentration of 400 μg/ml for 60 min; in liver and lung this effect was totally suppressed by melatonin and partially suppressed in brain in a concentration-dependent manner. In addition, melatonin alone was effective in brain at concentrations of 0.1 to 3 mM, in lung at 2 to 3 mM, and in liver at 0.1 to 3 mM; in all cases, the inhibitory effects of melatonin on lipid peroxidation were always directly correlated with the concentration of melatonin in the medium. The results show that the direct effect of LPS on the lipid peroxidation following endotoxin exposure is markedly reduced by melatonin.  相似文献   

12.

Background

Ferredoxin-NADP(H) reductase (FNR) from Pisum sativum and Flavodoxin (Fld) from Anabaena PCC 7119 have been reported to protect a variety of cells and organisms from oxidative insults. In this work, these two proteins were expressed in mitochondria of Cos-7 cells and tested for their efficacy to protect these cells from oxidative stress in vitro.

Principal Findings

Cos-7/pFNR and Cos-7/pFld cell lines expressing FNR and Fld, respectively, showed a significantly higher resistance to 24 h exposure to 300–600 µM hydrogen peroxide measured by LDH retention, MTT reduction, malondialdehyde (MDA) levels and lipid peroxide (LPO; FOX assay) levels. However, FNR and Fld did not exhibit any protection at shorter incubation times (2 h and 4 h) to 4 mM hydrogen peroxide or to a 48 h exposure to 300 µM methyl viologen. We found enhanced methyl viologen damage exerted by FNR that may be due to depletion of NADPH pools through NADPH-MV diaphorase activity as previously observed for other overexpressed enzymes.

Significance

The results presented are a first report of antioxidant function of these heterologous enzymes of vegetal and cyanobacterial origin in mammalian cells.  相似文献   

13.
The ability of synaptosomes subjected to oxidative stress, to maintain homeostasis has been evaluated using various indices of cellular integrity. These include levels of cytosolic calcium and leakiness of the plasma membrane. The status of a neural characteristic; depolarization-induced calcium entry into the cytoplasm, has also been studied. The presence of 5 μM FeSO4 and 0.1 mM ascorbic acid increased peroxidative activity as judged by the rate of thiobarbituric acid reactive material production, and depressed levels of free ionic calcium [Ca2+]i as determined using the calcium-sensitive flouorescent indicator dye fura-2. Depolarization-induced influx of 45Ca2+ was greatly depressed under these conditions, while basal calcium uptake was inhibited to a much lesser degree. The efflux of fura-2 from synaptosomes was enhanced in the oxidizing environment, suggesting increased permeability of the synaptosomal outer limiting membrane.

The treatment of synaptosomes with 25 μM -tocopherol succinate before and during exposure to the Fe2+/ascorbate mixture prevented many of the changes otherwise induced by the oxidizing system. Similar pretreatment with β-carotene or superoxide dismutase did not have any protective effect. Ganglioside GM1 pre-exposure did not alter the Fe2+/ascorbate-induced changes in calcium-related parameters, but mitigated synaptosomal plasma membrane damage as judged by fura-2 leakage. Thus exogenous agents may be capable of reducing the severity of oxidative stress in nervous tissue.  相似文献   


14.
Seven clinically healthy, nondiabetic (ND) and four Type II diabetic (D) men were assessed for circadian rhythms in oxidative “stress markers.” Blood samples were collected at 3h intervals for ∼27 h beginning at 19:00h. Urine samples were collected every 3 h beginning with the 16:00h-19:00h sample. The dark (sleep) phase of the light-dark cycle extended from 22:30h to 06:30h, with brief awakening for sampling at 01:00h and 04:00h. Subjects were offered general hospital meals at 16:30h, 07:30h, and 13:30h (2400 cal in total/24 h). Serum samples were analyzed for uric acid (UA) and nitrite (NO) concentrations, and urine samples were assayed for 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), and 8-isoprostane (ISP). Data were analyzed statistically both by the population multiple-components method and by the analysis of variance (ANOVA). The 24h mean level of UA and NO was greater in D than in ND subjects (424 vs. 338 μmol/L and 39.2 vs. 12.7 μM, respectively). A significant circadian rhythm in UA (p=0.001) and NO (p=0.048) was evident in ND but not in D (p=0.214 and 0.065). A circadian rhythm (p=0.004, amplitude=8.6 pmol/kgbw/3h urine vol.) was also evident in urine 8-OHdG of ND but not of D. The 24h mean levels of ND and D were comparable (76.8 vs. 65.7 pmol/kgbw/3h urine vol.). No circadian rhythm by population multiple-components was evident in MDA and ISP levels of ND subjects, or in 8-OHdG, MDA, and ISP in D. However, a significant time-effect was demonstrated by ANOVA in all variables and groups. The 24h mean of MDA and ISP in D was significantly greater than in ND (214 vs. 119 nmol/3h urine vol. and 622 vs. 465 ng/3h urine vol.). The peak concentrations of the three oxidative “stress markers” in urine, like those of serum NO, occurred early in the evening in both groups of men. This observation suggests a correlation between increased oxidative damage and increased rate of anabolic-catabolic events as evidenced by similarities in the timing of peak NO production and in parameters relevant to metabolic functions.  相似文献   

15.
The purpose of this study was to evaluate the ability of indolinic and quinolinic nitroxide radicals to protect trout (Salmo irideus) erythrocytes against oxidative stress. By using laurdan as a fluorescence probe, it was observed that the nitroxides inhibited the shift towards a gel phase of liposomes prepared with phospholipids extracted from trout erythrocyte membranes prior to the hemolytic event. In addition, the presence of 100 μM nitroxides in these liposomes protected the latter against lipid peroxidation determined by monitoring conjugated diene formation. However, the short chain analogue of the indolinic nitroxide and the quinolinic nitroxide had a negative effect on trout hemolysis, contrary to what has already been observed in previous studies on human RBCs (red blood cells). The half-time (t1/2) of the hemolytic process was 174 ± 4.02 min for the former and 184 ± 4.30 min for the latter compared to the control, 283 ± 5.05 min. Furthermore, the nitroxides remarkably increased the autoxidation rate of both trout and human hemoglobin to met-Hb. Even though protection at the membrane level is conferred by the nitroxides during the early stages of lipid peroxidation, their antioxidative ability might be overwhelmed at a later stage by other mechanisms such as the increased autoxidation of hemoglobin in the presence of the nitroxides, thus giving a possible explanation for the early induction of hemolysis induced by the nitroxides. The superoxide scavenging ability of all the nitroxides used was also evaluated through chemiluminescence.  相似文献   

16.
A growing body of experimental evidence suggests that the oxidative neurotoxicity of hemoglobin A may contribute to neuronal loss after CNS hemorrhage. Several hemoglobin variants, including hemoglobin S, are more potent oxidants in cell-free systems. However, despite the increased incidence of hemorrhagic stroke associated with sickle cell disease, little is known of the effect of hemoglobin S on cells of neural origin. In the present study, its toxicity was quantified and directly compared with that of hemoglobin A in murine cortical cell cultures. Reactive oxygen species production, as assessed by cellular fluorescence after treatment with dihydrorhodamine 123, was significantly increased by exposure to 10 μM hemoglobin S for 2-4 h. Neuronal death, as measured by propidium iodide staining and lactate dehydrogenase release, commenced at 4 h; for a 20-h exposure, the EC50 was approximately 0.71 μm. Glial cells were not injured. Cell death was completely blocked by iron chelation with deferoxamine or phenanthroline. Direct comparison of sister cultures exposed to either hemoglobin A or hemoglobin S revealed a similar amount of cell injury in both groups. A significant difference was consistently observed only after treatment with 1 μM hemoglobin for 20 h, which resulted in death of approximately one third more neurons with hemoglobin S than with hemoglobin A. The results of this study suggest that sickle cell hemoglobin is neurotoxic at physiologically relevant concentrations. This toxicity is iron-dependent, oxidative, and quantitatively similar to that produced by hemoglobin A.  相似文献   

17.
Redox reactions were studied in more than 90% pure tonoplast and plasma membranes isolated by free-flow electrophoresis from soybean (Glycine max) hypocotyls. Both types of membrane contained a b-type cytochrome (max = 561 nm) and a noncovalently bound flavin, two possible components of a transmembrane electron-transport chain. Isolated tonoplast and plasma membranes reduced ferricyanide, indophenol and various iron complexes with NADH or NADPH as electron donors. The redox activity was inhibited in tonoplast membranes by about 60% by 10 μM p-chloromercuribenzene sulfonate, 8% by 500 μM lanthanum nitrate and 10% by 100 μM nitrophenyl acetate. In contrast, the redox activity of isolated plasma membranes was inhibited by about 60% by 500 μM lanthanum nitrate or 100 μM nitrophenyl acetate, but only 25% by 10 μM p-chloromercuribenzene sulfonate. The results show that both tonoplast and plasma membranes of soybean contain active electron-transport systems, but that the two systems respond differently to inhibitors.  相似文献   

18.
The ability of synaptosomes, prepared from striata, to take up 3H-dopamine declined rapidly during incubation at 37°C, in an oxygenated Krebs-Ringer medium with 0.1 mM ascorbic acid. Ascorbic acid was responsible for this decrease. Its effectiveness after a 60 min incubation was concentration dependent from 1 μM and virtually complete for 0.1 mM. Furthermore, a decrease of synaptosomal membrane fluidity was revealed by measurements of fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene. This decrease was potentiated by Fe2+ ions (1 μM). In contrast, it was prevented by the Fe2+ ion chelator, desferrioxamine (0.1 mM), by the Ginkgo biloba extract EGb 761 [2-16 μg/ml], as well as by the flavonoid quercetin (0.1 μM). This preventive effect was shared by trolox C (from 0.1 mM). It is concluded that peroxidation of neuronal membrane lipids induced by ascorbic acid/Fe2+ is associated with a decrease in membrane fluidity which, in turn, reduces the ability of the dopamine transporter to take up dopamine.  相似文献   

19.
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation and may have either physiological or pathological significance regulating cell proliferation. We studied some biochemical effects of HNE, at various concentrations (0.1-100 μM), on Jurkat T cells incubated thereafter for 24, 48 and 72 h. HNE at low concentrations significantly enhanced the proliferation index, whereas at higher concentrations progressively blocked cell proliferation. Caspase 3 activity increased significantly at HNE concentrations between 1 and 10 μM and decreased at higher concentrations. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) increased progressively with HNE concentrations, particularly GSH-Px. Glucose-6-phosphate dehydrogenase (G6PDH) showed a different pattern, increasing at low HNE (1-5 μM) concentrations and rapidly declined thereafter. These results show that HNE may induce growth inhibition of Jurkat T cells and regulate the activity of typical antioxidant enzymes. Furthermore, the protective effect of doubling the foetal calf serum still points out the risk that cultured cells undergo oxidative stress during incubation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号