首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Elongation factor 3 (EF-3) is a unique and essential requirement of the fungal translational apparatus. EF-3 is a monomeric protein with a molecular mass of 116,000. EF-3 is required by yeast ribosomes for in vitro translation and for in vivo growth. The protein stimulates the binding of EF-1 alpha :GTP:aa-tRNA ternary complex to the ribosomal A-site by facilitating release of deacylated-tRNA from the E-site. The reaction requires ATP hydrolysis. EF-3 contains two ATP-binding sequence motifs (NBS). NBSI is sufficient for the intrinsic ATPase function. NBSII is essential for ribosome-stimulated activity. By limited proteolysis, EF-3 was divided into two distinct functional domains. The N-terminal domain lacking the highly charged lysine blocks failed to bind ribosomes and was inactive in the ribosome-stimulated ATPase activity. The C-terminally derived lysine-rich fragment showed strong binding to yeast ribosomes. The purported S5 homology region of EF-3 at the N-terminal end has been reported to interact with 18S ribosomal RNA. We postulate that EF-3 contacts rRNA and/or protein(s) through the C-terminal end. Removal of these residues severely weakens its interaction mediated possibly through the N-terminal domain of the protein.  相似文献   

3.
Dynamics of trigger factor interaction with translating ribosomes   总被引:1,自引:0,他引:1  
In all organisms ribosome-associated chaperones assist early steps of protein folding. To elucidate the mechanism of their action, we determined the kinetics of individual steps of the ribosome binding/release cycle of bacterial trigger factor (TF), using fluorescently labeled chaperone and ribosome-nascent chain complexes. Both the association and dissociation rates of TF-ribosome complexes are modulated by nascent chains, whereby their length, sequence, and folding status are influencing parameters. However, the effect of the folding status is modest, indicating that TF can bind small globular domains and accommodate them within its substrate binding cavity. In general, the presence of a nascent chain causes an up to 9-fold increase in the rate of TF association, which provides a kinetic explanation for the observed ability of TF to efficiently compete with other cytosolic chaperones for binding to nascent chains. Furthermore, a subset of longer nascent polypeptides promotes the stabilization of TF-ribosome complexes, which increases the half-life of these complexes from 15 to 50 s. Nascent chains thus regulate their folding environment generated by ribosome-associated chaperones.  相似文献   

4.
Alterations in the p14(ARF) tumor suppressor are frequent in many human cancers and are associated with susceptibility to melanoma, pancreatic cancer, and nervous system tumors. In addition to its p53-regulatory functions, p14(ARF) has been shown to influence ribosome biogenesis and to regulate the endoribonuclease B23, but there remains considerable controversy about its nucleolar role. We sought to clarify the activities of p14(ARF) by studying its interaction with ribosomes. We show that p14(ARF) and B23 interact within the nucleolar 60 S preribosomal particle and that this interaction does not require rRNA. In contrast to previous reports, we found that expression of p14(ARF) does not significantly alter ribosome biogenesis but inhibits polysome formation and protein translation in vivo. These results suggest a ribosome-dependent p14(ARF) pathway that regulates cell growth and thus complements p53-dependent p14(ARF) functions.  相似文献   

5.
6.
7.
Tuberous sclerosis is caused by mutations to either the TSC1 or TSC2 tumor suppressor gene. The disease is characterized by a broad phenotypic spectrum that includes seizures, mental retardation, renal dysfunction, and dermatological abnormalities. TSC1 encodes a 130-kDa protein called hamartin, and TSC2 encodes a 200-kDa protein called tuberin. Although it has been shown that hamartin and tuberin form a complex and mediate phosphoinositide 3-kinase/Akt-dependent phosphorylation of the ribosomal protein S6, it is not yet clear how inactivation of either protein leads to tuberous sclerosis. Therefore, to obtain additional insight into tuberin and hamartin function, yeast two-hybrid screening experiments were performed to identify proteins that interact with tuberin. One of the proteins identified was 14-3-3zeta, a member of the 14-3-3 protein family. The interaction between tuberin and 14-3-3zeta was confirmed in vitro and by co-immunoprecipitation; multiple sites within tuberin for 14-3-3zeta binding were identified; and it was determined that 14-3-3zeta associated with the tuberin-hamartin complex. Finally, it was shown that the tuberin/14-3-3zeta interaction is regulated by Akt-mediated phosphorylation of tuberin, providing insight into how tuberin may regulate phosphorylation of S6.  相似文献   

8.
9.
Summary Virginiamycin S (VS, a type B component of the synergistin group of antibiotics) is fluorescent in solution: the fluorescence intensity is proportional to VS concentration. The intensity of VS fluorescence was found to increase upon addition of 50S ribosomal subunits, and this variation (I416nm) to be proportional to the concentration of 50S subunits. This new technique was, then, used to measure the binding reaction of VS to ribosomes. Similar patterns of link age were obtained for ribosomes and large subunits, whereas very little fixation to 30S particles was detected. The binding reaction was virtually instantaneous at any temperature, and, for saturating VS, was not influenced by Mg++ concentration in the range 1 to 20 mM, nor by the replacement of 100 mM K+ with NH 4 + . The association constant of VS to 50S particles was found to be KA=2.5 × 106M–1, and from the Scatchard plot a value of 0.9 was calculated, which points to a stoichiometric reaction leading to 1 mole VS bound per mole of 50S particles. upon fixation of virginiamycin M (VM, a type A component of the synergistin group of antibiotics), the I of the VS-ribosome complex was increased, and a KA =15 × 106M–1 was recorded for the association constant of VS to 50S particles. Such sixfold increase in the affinity of ribosomes for VS may account for the synergistic effect of the 2 virginiamycin components in sensitive bacteria.  相似文献   

10.
Mitochondrial movements and morphology are regulated through interactions with the cytoskeletal system, in particular the microtubules. An interaction between the microtubule-associated proteins (MAPs) and the outer surface of rat brain mitochondria has been demonstratedin vitro andin situ. One of the MAPs, MAP2, binds to specific high-affinity sites on the outer membrane. Upon binding, MAP2 is released from microtubules, and it induces a physical alteration in the outer membrane which is characterized by a tighter association of porin with the membrane. It is concluded that MAP2 either binds to porin or to a domain of the outer membrane which alters the membrane environment of porin. The possibility is raised that this domain participates in mitochondrial mobilityin situ.  相似文献   

11.
Wu C  Ma SS  Ge JF  Wang YY  Tian HN  Liu XB  Zhang B  Liu FM  Zhang XK  Li QJ 《Gene》2012,499(2):347-351
GalNAc-T14 was identified as a novel IGFBP-3 binding partner in previous studies. Here, we furtherly confirmed the interaction between them by confocal microscopy, and identified the binding domain and probable interaction sites of GalNAc-T14 with IGFBP-3. The result of subcellular localization indicated that GalNAc-T14 was distributed in the cytosol, whereas IGFBP-3 existed in the cytosol and nucleolus. Confocal analyses demonstrated that IGFBP-3 and GalNAc-T14 colocalized in the cytosol. The result from yeast two hybrid assay showed that the C terminus of GalNAc-T14 (408-552aa) was essential for the interaction between GalNAc-T14 and IGFBP-3, especially Tyr(408), Pro(409), and Glu(410) of GalNAc-T14 may play key roles in the interaction with IGFBP-3. In conclusion, these studies demonstrated that IGFBP-3 and GalNAc-T14 are colocalized in MCF-7 cells and confirmed the interaction between IGFBP-3 and GalNAc-T14. This interaction may play an important role in the functional regulation of IGFBP-3.  相似文献   

12.
13.
14.
The interaction between silver ion and DNA has been followed by submarine gel electrophoresis. When pBR322 plasmid DNA was allowed to interact with silver(I) acetate, it was found to contain Form I and Form II bands whose intensity remained unchanged as the concentration of Ag(+) was increased from 0 to 50 mM. However, the mobility of the bands decreased as the concentration of Ag(+) was increased, indicating the occurrence of increased covalent binding of the metal ion with DNA. When 1:1 mixtures of silver(I) acetate and ascorbate were allowed to interact with plasmid and genomic DNAs, it was found that the mixtures were much more damaging to plasmid as well as genomic DNAs than silver(I) acetate or ascorbate alone. In the case of pBR322 plasmid DNA, the mixture at 12.5 mM concentration was found to be more damaging than the mixtures at both higher and lower concentrations. The increased DNA damage is believed to be due to free radicals produced from the oxidation of ascorbate by molecular oxygen where the metal ion was playing a catalytic role.  相似文献   

15.
The complexes formed between steffimycins and DNA were studied using various physicochemical techniques. The binding process has been followed spectrophotometrically or fluorimetrically. The binding parameters n and K, evaluated according to McGhee and Von Hippel, show a good affinity of these antibiotics for the macromolecule. Flow dichroism measurements showed that in the complex with DNA, the antracycline moiety of the steffimycins is intercalated between two base pairs of the macromolecule. The binding experiments with various polydeoxyribonucleotides and with various DNA samples, having different base pair compositions, suggest that an alternate sequence of A-T, such as that of poly[d(A-T)] . poly[d(A-T)], represents a good receptor site for the binding of steffimycins to DNA. The lack of in vivo activity of these antibiotics is discussed.  相似文献   

16.
This study examines the interaction of titin and myosin. In order to analyze the domains of myosin contributing to the binding for titin, we conducted a solid phase binding assay. Different portions of myosin (heavy chains, light chains and myosin fragments) were coated on the microtiter wells and reacted with biotinylated titin. Then the binding of biotinylated titin to these polypeptides was detected by using the avidinbiotin-peroxidase method. The results demonstrated that light meromyosin and subfragment 1 were the major domains of myosin interacting with titin. Titin fragments obtained by trypsin digestion were allowed to react with myosin in an affinity column, and the bound fragments were isolated by an acidic elution. Immunoblot analysis of myosin-bound titin fragments revealed that an A-band domain of titin was responsible for the binding of myosin. In addition, biotinylated titin labelled the outer A-bands and Z-bands in intact myofibrils, thus confirming the in situ binding of titin to myosin.  相似文献   

17.
14-3-3 proteins interact with a novel phosphothreonine motif (Y(946)pTV) at the extreme C-terminal end of the plant plasma membrane H(+)-ATPase molecule. Phosphorylation-independent binding of 14-3-3 protein to the YTV motif can be induced by the fungal phytotoxin fusicoccin. The molecular basis for the phosphorylation-independent interaction between 14-3-3 and H(+)-ATPase in the presence of fusicoccin has been investigated in more detail. Fusicoccin binds to a heteromeric receptor that involves both 14-3-3 protein and H(+)-ATPase. Binding of fusicoccin is dependent upon the YTV motif in the H(+)-ATPase and, in addition, requires residues further upstream of this motif. Apparently, 14-3-3 proteins interact with the unusual epitope in H(+)-ATPase via its conserved amphipathic groove. This implies that very diverse epitopes bind to a common structure in the 14-3-3 protein.  相似文献   

18.
19.
20.
The effect of ADP-ribosylation on the function of eukaryotic elongation factor 2 (EF-2) was investigated by kinetic analysis of the EF-2-catalyzed hydrolysis of GTP in the presence of ribosomes and by direct determination of the affinity of the modified factor for the ribosome. Under conditions where the concentration of EF-2 was rate-limiting, the ADP-ribosylation reduced the maximum rate of GTP hydrolysis and the second order rate constant Kcat/Km by approximately 50%. A similar decrease in Kcat and Kcat/Km was observed when the concentration of ribosomes were kept rate-limiting. The affinity of EF-2 for the pretranslocation type of ribosomes was reduced by 2 orders of magnitude after ADP-ribosylation. No effect was observed in the interaction with the post-translocation type of ribosomes, the ribosomal conformation responsible for activation of the EF-2-dependent GTPase. We conclude that the ADP-ribosylation affects both the association of the modified factor with pretranslocation ribosomes and the hydrolytic capacity of the factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号