首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Topography of outer membrane growth in E. coli   总被引:7,自引:0,他引:7  
  相似文献   

3.
4.
Changes in the protoplast membrane of the KM strain of Bacillus megaterium were assessed after growth at 20, 30, or 37 degrees, C. Although the overall membrane concentrations of lipids and proteins were virtually unchanged, increased culture temperature resulted in cells with membranes that contained relatively more unbranched and long-chain fatty acids and more acidic phospholipids, as well as different proportions and numbers of individual proteins. Electrophoretic analysis revealed 23, 31, or 29 protein bands, respectively, in membranes from cells grown at the three temperatures. Protoplasts from cells grown at higher temperatures were considerably less susceptible to lysis by shearing forces. As judged by passive leakage at 30 degrees C, intact cells from cultures grown at 37 degrees C were the least permeable to erythritol. Relatively low ambient concentrations of Ca2+ or Mg2+ protected protoplasts from osmotic lysis but even much higher concentrations left erythritol leakage virtually unaffected. Thus, growth temperature affected not only membrane lipis but also membrane proteins and these changes resulted in membranes with altered mechanical properties and permeabilities.  相似文献   

5.
6.
A specific effect of Cu2+ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 100 microM CuCl2 was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25 degrees C. The release of amino acids was partial, and the composition of the amino acids released was different from that of those retained in the cells. Mostly glutamate was released, but arginine was mainly retained in the cells. Cellular K+ was released rapidly after CuCl2 addition, but 30% of the total K+ was retained in the cells. These and other observations suggested that Cu2+ caused selective lesions of the permeability barrier of the plasma membrane but did not affect the permeability of the vacuolar membrane. These selective changes were not induced by the other divalent cations tested. A novel and simple method for differential extraction of vacuolar and cytosolic amino acid pools by Cu2+ treatment was established. When Ca2+ was added to Cu2+-treated cells, a large amount of Ca2+ was sequestered into vacuoles, with formation of an inclusion of a Ca2+-polyphosphate complex in the vacuoles. Cu2+-treated cells also showed enhanced uptake of basic amino acids and S-adenosylmethionine. The transport of these substrates showed saturable kinetics with low affinities, reflecting the vacuolar transport process in situ. With Cu2+ treatment, selective leakage of K+ from the cytosolic compartment appears to create a large concentration gradient of K+ across the vacuolar membrane and generates an inside-negative membrane potential, which may provide a driving force of uptake of positively charged substances into vacuoles. Cu2+ treatment provides a useful in situ method for investigating the mechanisms of differential solute pool formation and specific transport phenomena across the vacuolar membrane.  相似文献   

7.
8.
Synthesis and assembly of the membrane proteins in E. coli.   总被引:65,自引:0,他引:65  
K Ito  T Sato  T Yura 《Cell》1977,11(3):551-559
Kinetics of integration of membrane proteins were studied in E. coli to discover how membrane proteins find their final location in the functional membrane. The experiments make use of a simple and convenient method developed for isolating inner and outer membranes from a number of small-scale cultures with high recovery. Among the proteins that constitute the cell surface structures, inner membrane proteins are integrated most rapidly after synthesis, whereas outer membrane proteins delay somewhat, and periplasmic proteins delay further in reaching their destinations. Protein I, a major outer membrane protein with molecular weight of about 37,000 daltons, exhibits significantly slower rates of integration than other outer membrane proteins. The decreased fluidity of membrane lipids by temperature shiftdown of an unsaturated fatty acid auxotroph grown on elaidate results in abnormally slow assembly of the outer membrane proteins and also in an anomalous assembly of the inner membrane proteins, suggesting that the fluid state of the lipids is required for normal operation of these processes. The possible relevance of these findings to the mechanism of membrane formation is discussed.  相似文献   

9.
10.
Escherichia coli flavohemoglobin has been shown to be able to bind specifically unsaturated and/or cyclopropanated fatty acids with very high affinity. Unsaturated or cyclopropanated fatty acid binding results in a modification of the visible absorption spectrum of the ferric heme, corresponding to a transition from a pentacoordinated (typical of the ligand free protein) to a hexacoordinated, high spin, heme iron. In contrast, no detectable interaction has been observed with saturated fatty acid, saturated phospholipids, linear, cyclic, and aromatic hydrocarbons pointing out that the protein recognizes specifically double bonds in cis conformation within the hydrocarbon chain of the fatty acid molecule. Accordingly, as demonstrated in gel filtration experiments, flavohemoglobin is able to bind liposomes obtained from lipid extracts of E. coli membranes and eventually abstract phospholipids containing cis double bonds and/or cyclopropane rings along the acyl chains. The presence of a protein bound lipid strongly affects the thermodynamic and kinetic properties of imidazole binding to the ferric protein and brings about significant modifications in the reactivity of the ferrous protein with oxygen and carbon monoxide. The effect of the bound lipid has been accounted for by a reaction scheme that involves the presence of two sites for the lipid/ligand recognition, namely, the heme iron and a non-heme site located in a loop region above the heme pocket.  相似文献   

11.
Anammox bacteria possess unique membranes that are mainly comprised of phospholipids with extraordinary “ladderane” hydrocarbon chains containing 3 to 5 linearly concatenated cyclobutane moieties that have been postulated to form relatively impermeable membranes. In a previous study, we demonstrated that purified ladderane phospholipids form fluid-like mono- and bilayers that are tightly packed and relatively rigid. Here we studied the impact of temperature and the presence of bacteriohopanoids on the lipid density and acyl chain ordering in anammox membranes using Langmuir monolayer and fluorescence depolarization experiments on total lipid extracts. We showed that anammox membrane lipids of representatives of Candidatus “Kuenenia stuttgartiensis”, Candidatus “Brocadia fulgida” and Candidatus “Scalindua” were closely packed and formed membranes with a relatively high acyl chain ordering at the temperatures at which the cells were grown. Our findings suggest that bacteriohopanoids might play a role in maintaining the membrane fluidity in anammox cells.  相似文献   

12.
13.
Heat treatment of a wild-type Escherichia coli strain at 55 degrees C in 50 mM Tris-hydrochloride buffer with or without 10 mM magnesium sulfate or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer at pH 8.0 caused an increase in cell surface hydrophobicity. By determining the location of n-hexadecane droplets attached to cells by phase-contrast microscopy, the septal and polar regions of heated cells appeared to become the most frequently hydrophobic. Some of the lipopolysaccharide molecules in the outer membrane were released from heated cells, and the cells became susceptible to the hydrolytic action of added phospholipase C. Heat-treated cells also became permeable to the hydrophobic dye crystal violet, which was added externally. The release of part of the outer membrane by heat treatment appeared to bring about the disorganization of the outer membrane structure and, as a consequence, to result in the partial disruption of the permeability barrier function of the outer membrane. Tris was found to enhance damage to the outer membrane by heat.  相似文献   

14.
Summary An increase in the specific activity of kinase and transferase is observed when late growth phase is compared with early exponential phase. The increase is more pronounced in the presence of saturating inducer concentrations than in uninduced cultures. Epimerase does not increase in late growth phase in the presence of D-fucose, provided the other enzymes of the galactose pathway are present. It is believed that increases observed are due to an increased rate of synthesis of the galactose enzymes in late growth phase, and that the lack of coordination found for epimerase is due to an inactivation of the latter enzyme, which occurs in the presence of D-fucose and needs an intact galactose pathway.  相似文献   

15.
An E. coli promoter induced by the cessation of growth   总被引:27,自引:6,他引:27  
  相似文献   

16.
17.
Bidirectional growth of the E. coli chromosome   总被引:19,自引:0,他引:19  
  相似文献   

18.
Growth of Pseudomonas aeruginosa PAO1 at 15 to 45 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharides (LPSs), and outer membrane proteins of the cells. Cells grown at 15 degrees C contained, relative to those cultivated at 45 degrees C, increased levels of the phospholipid fatty acids hexadecenoate and octadecenoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation with decreases in dodecanoic and hexadecanoic acids and increases in the level of 3-hydroxydecanoate and 2-hydroxdodecanoate as the growth temperature decreased. In addition, LPS extracted from cells cultivated at the lower temperatures contained a higher content of long-chain S-form molecules than that isolated from cells grown at higher temperatures. On the other hand, the percentage of LPS cores substituted with side-chain material decreased from 37.6 mol% at 45 degrees C to 19.3 mol% at 15 degrees C. The outer membrane protein profiles indicated that at low growth temperatures there was an increase in a polypeptide with an apparent molecular weight of 43,000 and decreases in the content of 21,000 (protein H1)- and 27,500-molecular-weight proteins.  相似文献   

19.
Escherichia coli lipoproteins are anchored to the periplasmic surface of the inner or outer membrane depending on the sorting signal. An ATP-binding cassette (ABC) transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The structures of LolA and LolB are remarkably similar to each other. Both have a hydrophobic cavity consisting of an unclosed beta-barrel and an alpha-helical lid. Structural differences between the two proteins reveal the molecular mechanisms underlying the energy-independent transfer of lipoproteins from LolA to LolB. Strong inner membrane retention of lipoproteins occurs with Asp at position 2 and a few limited residues at position 3. The inner membrane retention signal functions as a Lol avoidance signal and inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. The positive charge of phosphatidylethanolamine and the negative charge of Asp at position 2 are essential for Lol avoidance. The Lol avoidance signal is speculated to cause the formation of a tight lipoprotein-phosphatidylethanolamine complex that has five acyl chains and therefore cannot be recognized by LolCDE.  相似文献   

20.
Membranes from Bacillus caldotenax contain neutral lipids and phospholipids such as phosphatidylethanolamine, phosphatidyl glycerol and cardiolipin. Each of the lipids has almost the same fatty acid composition. When the growth temperature decreases, not only the fatty acid composition but also the lipid composition changes such that the membrane fluidity increases, and the composition of membrane-bound proteins also changes. On shifting the growth temperature from 65° to 45°C, the bacterium grows immediately with a doubling time at 45°C, but the compositions of proteins and lipids in membranes gradually change and reach the compositions typical of cells growing at 45°C one doubling time after the temperature shift, respectively. It is concluded that the change in chemical composition of membrane of the bacterium on the temperature shift from 65° to 45°C is not prerequisite for growth at 45°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号