首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic variants were found at two loci for pancreatic proteinase in mice. The Prt-1 locus contains a pair of allelic genes, Prt-1 a and Prt-1 b , ad the Prt-2 locus contains two codominant allelic genes, Prt-2 a and Prt-2 b .Expression of the two genetic variants of proteinase allowed mice strains used in this study to be classified into three phenotypic classes. Prt-1 b andPrt-2 a were found in most of the Japanese inbred strains, Prt-1 b andPrt-2 a were found in most of the inbred strains imported from the United States, and, furthermore, Prt-1 b and Prt-2 b were present in Japanese feral-origin mice strains. Prt-1, Prt-2, and Amy-2 loci did not belong to the same linkage group.  相似文献   

2.
Three to five isozymes of pancreatic proteinase exist in mice, and they have been designated as bands I, II, III, IV, and V. Identification experiments of these isozymes were carried out in this study; banks I, IV, and V are trypsin, and bands II and III are chymotrypsin. Therefore, it is concluded that Prt-1, controlling band V, is a locus for trypsin and Prt-2, controlling bands II and III, is a locus for chymotrypsin. In addition, a new locus, Prt-3, has been found. At this locus the two allelic genes, Prt-3 a and Prt-3 b , control the low and high tryptic activities of band IV, respectively. Prt-3 is present only in the strain Mol-A. Linkage experimentation has shown that Prt-1 is closely linked to Prt-3.  相似文献   

3.
Linkage relationships of 19 enzyme Loci in maize   总被引:7,自引:1,他引:6       下载免费PDF全文
Linkage relationships of 19 enzyme loci have been examined. The chromosomal locations of eight of these loci are formally reported for the first time in this paper. These localizations should assist in the construction of additional useful chromosome marker stocks, especially since several of these enzyme loci lie in regions that were previously poorly mapped. Six loci are on the long arm of chromosome 1. The arrangement is (centromere)—Mdh4-mmm-Pgm1-Adh1-Phi-Gdh1, with about 46% recombination between Mdh4 and Gdh1.—Linkage studies with a2 and pr have resulted in the localization of four enzyme genes to chromosome 5 with arrangement Pgm2-Mdh5-Got3-a2-(centromere)-pr-Got2. Pgm2 lies approximately 35 map units distal to a2 in a previously unmapped region of the short arm of 5, beyond ameiotic.—Approximately 23% recombination was observed between Mdh4 and Pgm1 on chromosome 1, while 17% recombination occurred between Mdh5 and Pgm2 on chromosome 5. Similarly, linkages between Idh1 and Mdh1, about 22 map units apart on chromosome 8, and between Mdh2 and Idh2, less than 5 map units apart on chromosome 6, were observed. Thus, segments of chromosomes 1 and 5 and segments of 6 and 8 may represent duplications on nonhomologous chromosomes.  相似文献   

4.
Two new esterase polymorphisms (Es-7 and Es-8) were identified in the testis homogenate of laboratory rats, Rattus norvegicus, by using discontinuous gradient polyacrylamide gel electrophoresis. Es-7 expressed two phenotypes: ES-7A (fast) and ES-7B (slow). Es-8, which migrated in the cathodal region rather than the ES-7 region, also expressed two phenotypes: ES-8A (fast) and ES-8B (slow). Linkage tests among Es-2, Es-7, and Es-8 were made from backcross progeny of the mating (LEJ/Hkm × T/Hok)F1 × LEJ/Hkm. One recombinant in 51 progeny tested was observed between Es-2 and Es-7; however, recombination between Es-2 and Es-8 was not observed in the same progeny. In addition, we show that the esterase polymorphisms of Es-5 in liver homogenate and Es-3 in small intestine homogenate are identical.  相似文献   

5.
An electrophoretic polymorphism of an erythrocyte esterase, esterase-8, specific for the substrates α- and β-naphthyl acetate has been observed in the Asian house mouse, Mus musculus castaneus. M. m. castaneus is interfertile with inbred strains of mice, and F1 hybrids (C57BL/6J × castaneus)F1 and (SWR/J × castaneus)F1 show a double-banded phenotype similar to a mixture of parental forms. This pattern suggests codominant expression of a structural gene difference. In backcrosses, ES-8 segregated as a single autosomal gene, designated Es-8, linked to Gpi-1 on chromosome 7. A gene order of Es-8, Gpi-1, c, Mod-2, and Hbb was determined from a series of crosses.  相似文献   

6.
Y S Oh  T Tomita 《Jikken dobutsu》1987,36(1):73-77
Linkage tests on the faded gene were carried out with some coat color and biochemical markers, It was shown that the faded locus was not closely linked to the following loci: Idh-1 (chromosome 1), a (2), Car 2 (3), Mup-1 (4), Pgm-1 (5), Hbb (7), Gpi-1 (7), Es-1 (8), Trf (9), Es-3 (11), s (14), Sod-1 (16) and Ce-2 (17). The mutant locus showed linkage with Ggc on chromosome 6.  相似文献   

7.
Biochemistry and genetics of a testosterone-dependent murine serum esterase designated esterase-29 (ES-29) are described. The enzyme was identified after disc electrophoresis and subsequent staining for esterase using -naphthyl acetate as the substrate. It was inhibited by bis-p-nitrophenyl phosphate and was resistant top-chlorophenylsulphonate and hence was classified as carboxylesterase EC 3.1.1.1. The molecular mass was estimated to be about 130 kDa. It was shown that ES-29 is under the control of two independent genes. The first, termed Es-29, is suggested to be a structural locus, linked to the cluster-2 esterase loci on chromosome 8. Three alleles atEs-29, Es-29 a, Es-29b, andEs-29 care distinguished, which determine absence (SEG/1), strong activity (BALB/cJ), and low activity (MOLH/Fre), respectively. The second locus, termedMse-1 (serum esterase modifying factor), was found to be closely linked toPre-2 on chromosome 12 and is suggested to be a modifying or regulatory gene. Two alleles were distinguished,Mse-1 a(BALB/cJ) andMse-1 m(MOL3/JA, CasBgr), which determine whether ES-29 appears as a single band or a double band, respectively.Mse-1 mis dominant toMse-1 a.This work was supported by the Deutsche Forschungsgemeinschaft. This is communication No. 70 of a research program devoted to the cellular distribution, genetics, and regulation of nonspecific esterases.  相似文献   

8.
The heredity and linkage of gene loci were established for two different enzymes with esterproteolytic activity from mouse submandibular gland: protease A and protease E. Based upon strain distribution and biochemical properties of the two esterproteases, the existence of two corresponding structural loci is proposed: Prt-4 (protease A) and Prt-5 (protease E). Prt-4 and Prt-5 proved to be different from Tam-1. From a four-point-cross, the gene order Gpi-1-(Tam-1, Prt-4, Prt-5)-c is suggested. Thus a gene cluster was shown to exist on chromosome 7 coding for esterproteases, all of which are controlled by testosterone.This work was supported by grants from the Deutsche Forschungsgemeinschaft, Bonn (SFB 46).  相似文献   

9.
Two alleles at each of four esterase loci in Rattus norvegicus are described with regard to tissue expression, electrophoretic characterization, and genetic linkage. A previously described dominant gene for prealbumin serum esterase is demonstrated to exist as two codominant alleles in the genetically determined absence of the characteristic albumin esterase. The allelic composition of 16 inbred strains for four esterase genes is provided, and the heretofore ambiguous nomenclature of rat esterase genetics is standardized. Linkage of Es-1, Es-2, and Es-3 is demonstrated. Es-2 and Es-3 are tightly linked in that no recombination has been observed in 55 offspring. The same offspring demonstrated 9% recombination between Es-1 and the other two loci.This work was supported by a grant from the Brown-Hazen Fund of Research Corporation.  相似文献   

10.
An improved method for detecting four Np-1 (purine nucleoside phosphorylase) alleles in mouse erythrocytes by cellulose acetate electrophoresis is described. The previous linkage of Np-1 and Es-10 (esterase-10) was confirmed, with a map distance of 13.0±2.6 cM. Np-2 was detected by either specific activity assay or starch gel electrophoresis and shown to be linked to Es-10, 15.9 ± 3.1 cM, on chromosome 14. No recombinants between Np-1 and Np-2 were observed in 52 offspring, indicating either that these loci are either closely associated or that Np-2 represents simply a property of existing allelic products of the Np-1 locus.This research was supported by Medical Research Council of Canada grants to F.G.B. and F.F.S.  相似文献   

11.
A further polymorphic rat esterase with broad tissue expression and restricted substrate specificity is described and tentatively called Es-6. Inbred rat strains have either fixed allele Es-6F or fixed allele Es-6S. Es-6 is not linked to the established esterase cluster consisting of the eight esterase loci Es-1, Es-2, Es-3M, Es-4M, Es-4W, Es-5 (=Es-3W), Es-7, and Es-8 in LG V of the rat or to RT1, Gc, c, a, and h. Esterases with apparently identical biochemical and genetical characteristics are Es-17 of the mouse and Es-A4 of humans.Supported by the Deutsche Forschungsgemeinschaft (Be 352/13 and Gu 105).  相似文献   

12.
Golenberg EM 《Genetics》1986,114(3):1023-1031
The linkage relationships in wild emmer wheat, Triticum dicoccoides , between nine enzymatic loci (Mdh-1, Ipo, β-Glu, Pept-1, Pept-3, Est-5, Est-1, 6Pgdh-2 and Hk) and a coleoptile pigment locus (Rc) were investigated. Chromosome locations of genes were inferred from analysis of ditelocentric lines of Triticum aestivum, cultivar Chinese Spring. The loci Mdh-B1 and Hk are linked (lambda = 0.1869) and are most likely located on the chromosome 1B. The loci Pept-B1 and Rc are linked (lambda = 0.2758) and are located on the 6Bq chromosomal arm. Rc also has significant interactions with the loci Pept-3 and Ipo, although there is no significant linkage detectable. The interactions may be a result of epigenetic interactions. Est-1 has only one active product in T. dicoccoides and is most likely located on the 3Ap chromosome arm. No significant interactions were found for the remaining loci.  相似文献   

13.
Various patterns of mouse pancreatic proteinase activity bands were observed on agarose gel electrophoresis. Prt-1 a and Prt-1 b genes control the positive (PRT-1A) and negative (PRT-1B) expression of tryptic band V, respectively; Prt-2 a and Prt-2 b correspond to chymotryptic bands II (PRT-2A) and III (PRT-2B); Prt-3 a and Prt-3 b control the low (PRT-3A) and high (PRT-3B) tryptic activities of band IV; the Prt-1 and Prt-3 loci are closely linked on the same chromosome; Prt-6 a and Prt-6 b correspond to tryptic bands I (PRT-6A) and I (PRT-6B). Twenty-four laboratory strains from the United States showed the phenotype PRT-1A, PRT-3A, and PRT-2A. Of laboratory strains established in Europe, 6 showed PRT-1A, PRT-3A, and PRT-2A, and 10 had PRT-1B, PRT-3A, and PRT-2A bands. Most wild mice around the world and their descendants showed the phenotype PRT-1B, PRT-3B, and PRT-2A. Only the phenotype of M. m. brevirostris was PRT-1A, PRT-3A, and PRT-2A, which was the same as most laboratory inbred strains. PRT-2B was observed mainly in Japanese (M. m. molossinus) and Korean (M. m. yamashinai) wild mice. PRT-6B was detected only in Mus spicilegus and Mus caroli, but all other mice including wild populations and laboratory strains showed PRT-6A. New biochemical phenotypes such as PRT-2C and PRT-3C were also found in this study.  相似文献   

14.
A new carboxylesterase isozyme (EC 3.1.1.1), designated ES-30, is described in mouse liver. Two phenotypes were distinguished, ES-30A, a possible null type, was found in SPE/Pas and in other lines derived fromMus spretus, and ES-30B was found in BALB/cJ and other laboratory inbred strains. ES-30B is characterized by a distinct electrophoretic band when stained using 5-bromoindoxyl acetate as the substrate. After isolation and purification from other esterases by ion-exchange chromatography and molecular sieving, the molecular mass was estimated by two independent methods to be 62 and 64 kDa, respectively. The activity of ES-30B is higher in adult males than in females and can be stimulatedin vivo by testosterone. The distribution of phenotypes on the progeny of a backcross series suggests a separate locus,Es-30, with the allele a for absence andb for presence of the isozyme. LocusEs-30 is shown to be closely linked toEs-2 and toEs-7 of cluster-2 on chromosome 8. The gene orderEs-9—Got-2—(Es-2, Es-7, Es-30) is suggested. This work was supported by the Deutsche Forschungsgemeinschaft. This is communication No. 72 of a research program devoted to the cellular distribution, genetics, and regulation of nonspecific esterases.  相似文献   

15.
A large conserved linkage group exists on mouse chromosome 8 and human chromosome 16q, including the loci for chymotrypsinogen B (Ctrb), haptoglobin (Hp), lecithin:cholesterol acyltransferase (Lcat), metallothionein-1,-2 (Mt-1,-2), tyrosine aminotransferase (Tat), and uvomorulin (Um). Using cloned gene probes, these six loci were mapped in M. m. domesticus X M. spretus interspecific crosses relative to a number of chromosome 8 anchor loci resulting in the gene order Es-1,Es-9-Mt-1,-2-Got-2-Es-2,Es-7,Lcat,Um-Hp,Tat,Ctrb-e. These results complement earlier studies and redefine the conserved segment on mouse chromosome 8, previously defined by the Hp-Tat interval, by the 24-cM interval between Mt-1,-2 and the conserved locus for adenine phosphoribosyltransferase, Aprt, mapped at 25 cM from Es-1 by T. B. Nesterova, P. M. Borodin, S. M. Zakian, and O. L. Serov (1987, Biochem. Genet. 25: 563-568). Within this segment, the gene order appears the same in man and mouse. While map distances between HP-TAT,HP-CTRB, and TAT-CTRB of respectively 7, 11, and 9 cM have previously been measured in man, no crossovers between Hp, Tat, and Ctrb were observed in over 100 meioses in the mouse.  相似文献   

16.
A method for detecting two alleles at Np-1 (nucleoside phosphorylase) and three alleles at Es-10 (esterase 10) from mouse blood by cellulose acetate electrophoresis is described. The allelic constitution at these loci for 44 inbred strains and stocks was determined. The location of Np-1 on chromosome 14 was established by backcross experiments in which alleles at Np-1 and Robertsonian translocations were segregating. Es-10 was shown to be linked to Np-1, and the following genetic map of Chr 14 was constructed: centromere-(8.9±4.0 cM)-[Np-1, Wc]-(10.2±1.9 cM)-Es-10-(15.5±3.7 cM)-s. The homologous human loci, NP and ES-D, are not linked.This work was supported by Contract E(11-1)-3267 with the Energy Research and Development Administration, by Contracts NO1-ES4-2156 and NO1-ES4-2159 with the National Institute of Environmental Health Sciences, and by Grants GM 19656 and GM 20919 from the National Institute of General Medical Sciences. D. A. K. was a participant in the 1975 Summer Program for College, Graduate, and Medical Students, which was supported, in part, by the Clark Foundation. The Jackson Laboratory is fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   

17.
A six-point cross was carried out to determine the gene order and distances among loci on mouse chromosome 9. Our results are consistent with the following arrangement: centromere – Lap-1 – (1.2 ± 0.8) – Es-17 – (3.0 ± 1.0) – Ups – (1.3 ± 0.7) – Alp-1 – (23.1 ± 3.4) – Mod-1 – (10.9 ± 2.6) – Acy-1 . This study provides the first estimate of the distances between Es-17, Ups and Alp-1. Exceptions to the preferred association of alleles of Es-17 and Ups have been found in three feral populations and one inbred strain. Evidence is presented for the homology of this chromosome region with the ESA4UPS APO-AI region on the long arm of human chromosome 11.  相似文献   

18.
Two new alleles at the Es-2 locus are described which determine electrophoretic variants of serum esterases of rats. A new esterase protein is described which is detectable in sera of sexually mature females of the appropriate genotype. Evidence is presented for genetic linkage between the Ag-C blood group locus and Es-1, Es-2, and the locus controlling the sex-influenced protein. Since the Ea-1 blood group locus of mice is linked to four esterase loci, it is suggested that Ag-C is the rat homologue of the mouse Ea-1 locus.This work was supported by U.S.P.H.S. Grants AI-09275, CA-15146, and CA-10097.  相似文献   

19.
Three polymorphic loci have been identified in the prairie vole, Microtus ochrogaster. Together they control a group of plasma esterases which can be separated using starch gel electrophoresis. A structural locus, Es-1, produces an enzyme which from genetic evidence appears to be a dimer. The allele Es-1 a produces a wholly active subunit, and homozygotes give a single enzyme band. The product of the second allele, Es-1 o, cannot form active enzyme on its own but will dimerize with the Es-1 a subunit, giving a hybrid enzyme with a slower electrophoretic mobility than the pure Es-1 a enzyme. The third allele, Es-1 , has no detectable product. A second structural locus, Es-2, is linked to Es-1. The allele Es-2 a produces a single enzyme band, but the second allele Es-2 has no detectable product. A modifier locus, Me, changes the mobility of the Es-1 enzymes. Me f is dominant over me s, and in homozygotes for me s the mobility is reduced.This work was supported by National Science Foundation Grant GB6273.This is contribution No. 869 from that Department.  相似文献   

20.
Molecular mapping of new blast resistance genes is important for developing resistant rice cultivars using marker-assisted selection. In this study, 259 recombinant inbred lines (RILs) were developed from a cross between Nipponbare and 93-11, and were used to construct a 1165.8-cM linkage map with 131 polymorphic simple sequence repeat (SSR) markers. Four major quantitative trait loci (QTLs) for resistance to six isolates of Magnaporthe oryzae were identified: qPi93-1, qPi93-2, qPi93-3, and qPiN-1. For the three genes identified in 93-11, qPi93-1 is linked with SSR marker RM116 on the short arm of chromosome 11 and explains 33% of the phenotypic variation in resistance to isolate CHE86. qPi93-2 is linked with SSR marker RM224 on the long arm of chromosome 11 and accounts for 31% and 25% of the phenotypic variation in resistance to isolates 162-8B and ARB50, respectively. qPi93-3 is linked with SSR marker RM7102 on chromosome 12 and explains 16%, 53%, and 28% of the phenotypic variation in resistance to isolates CHE86, ARB52, and ARB94, respectively. QTL qPiN-1 from Nipponbare is associated with SSR marker RM302 on chromosome 1 and accounts for 34% of the phenotypic variation in resistance to isolate PO6-6. These new genes can be used to develop new varieties with blast resistance via marker-aided selection and to explore the molecular mechanism of rice blast resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号