首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
Sirks  M. J. 《The Botanical review》1938,4(3):113-131
The Botanical Review - It may be said in conclusion that the question of plasmatic inheritance is becoming of greater importance, not only from a theoretical point of view, but also as it concerns...  相似文献   

4.
Early cell biologists perceived centrosomes to be permanent cellular structures. Centrosomes were observed to reproduce once each cycle and to orchestrate assembly a transient mitotic apparatus that segregated chromosomes and a centrosome to each daughter at the completion of cell division. Centrosomes are composed of a pair of centrioles buried in a complex pericentriolar matrix. The bulk of microtubules in cells lie with one end buried in the pericentriolar matrix and the other extending outward into the cytoplasm. Centrioles recruit and organize pericentriolar material. As a result, centrioles dominate microtubule organization and spindle assembly in cells born with centrosomes. Centrioles duplicate in concert with chromosomes during the cell cycle. At the onset of mitosis, sibling centrosomes separate and establish a bipolar spindle that partitions a set of chromosomes and a centrosome to each daughter cell at the completion of mitosis and cell division. Centriole inheritance has historically been ascribed to a template mechanism in which the parental centriole contributed to, if not directed, assembly of a single new centriole once each cell cycle. It is now clear that neither centrioles nor centrosomes are essential to cell proliferation. This review examines the recent literature on inheritance of centrioles in animal cells.Key words: centrosome, centriol, spindle, mitosis, microtubule, cell cycle, checkpoints  相似文献   

5.
6.
Cytoplasmic inheritance   总被引:1,自引:0,他引:1  
  相似文献   

7.
Phenol sulfotransferase inheritance   总被引:1,自引:0,他引:1  
1. Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic and catechol neurotransmitters. Human tissues contain both thermostable (TS) and thermolabile (TL) forms of PST that differ in their substrate specificities, inhibitor sensitivities, physical properties, and regulation. 2. Individual variations in the levels of activity of both TS and TL PST in the human platelet are strongly influenced by inheritance. 3. Individual differences in the level of platelet TS PST activity are correlated with individual variations in the activity of this form of the enzyme in human cerebral cortex, liver, and intestinal mucosa. 4. There are also individual familial differences in the thermal stability of TS PST in the platelet. These differences are correlated with individual variations in the thermal stability of TS PST in cerebral cortex, liver, and intestinal mucosa. 5. Individual variations in the thermal stability of TS PST in hepatic tissue are associated with the presence of one or both of a pair of TS PST isozymes that can be separated by ion-exchange chromatography and that differ in their thermal stabilities. 6. This series of observations suggests that a structural gene polymorphism may be one mechanism by which inheritance controls TS PST in humans. The isozymes of TS PST in liver may represent the products of alternative alleles for this polymorphism, alleles that might control the structure of TS PST in many human tissues.  相似文献   

8.
Our increased knowledge of epigenetic reprogramming supports the idea that epigenetic marks are not always completely cleared between generations. Incomplete erasure at genes associated with a measurable phenotype can result in unusual patterns of inheritance from one generation to the next. It is also becoming clear that the establishment of epigenetic marks during development can be influenced by environmental factors. In combination, these two processes could provide a mechanism for a rapid form of adaptive evolution.  相似文献   

9.
10.
11.
12.
Eukaryotic cells use a variety of strategies to inherit the Golgi apparatus. During vertebrate mitosis, the Golgi reorganizes dramatically in a process that seems to be driven by the reversible fragmentation of existing Golgi structures and the temporary redistribution of Golgi components to the endoplasmic reticulum. Several proteins that participate in vertebrate Golgi inheritance have been identified, but their detailed functions remain unknown. A comparison between vertebrates and other eukaryotes reveals common mechanisms of Golgi inheritance. In many cell types, Golgi stacks undergo fission early in mitosis. Some cells exhibit a further Golgi breakdown that is probably due to a mitotic inhibition of membrane traffic. In all eukaryotes examined, Golgi inheritance involves either the partitioning of pre-existing Golgi elements between the daughter cells or the emergence of new Golgi structures from the endoplasmic reticulum, or some combination of these two pathways.  相似文献   

13.
Results of an interview study with eighty-four secondary school students indicate that children's theories about inheritance may he well-developed and coherent (though many do not conform to accepted scientific theory) before the topic is taught in school biology. The research alerts teachers to a number of commonly held viewpoints—for example intra-specific variation is often explained in terms of developmental defects, many students believe that acquired characteristics are inherited, and many also appear not to understand the equality of parental gene contribution or the mechanism of inheritance generally. Although the results suggest some improvement in understanding with age, especially between 14 and 16 years, several alternative viewpoints persisted in the older age groups. The authors discuss the implications of the work for biology teachers and suggest that more emphasis be given in lower secondary courses to the significance of genetics to life in general and to man in particular. Links between existing knowledge of familiar instances of inheritance and more technical aspects of genetics will, it is proposed, be important in future learning.  相似文献   

14.
15.
16.
Variation in epigenetic inheritance   总被引:7,自引:0,他引:7  
Changing patterns of DNA methylation may underlie differential gene expression in development. Additional sources of variation in allelic methylation may be introduced by parental differences as well as by gamete of origin.  相似文献   

17.
Transgene inheritance in plants   总被引:1,自引:0,他引:1  
The patterns of transgene inheritance in plants and the possible explanations for non-Mendelian transmission are reviewed. The non-Mendelian inheritance of a transgene has been recorded with a frequency between 10% and 50% in transgenic plants produced either by Agrobacterium-mediated transformation or through particle bombardment. Different effects such as deletion, duplication, rearrangement, repeated sequence recombination as well as gene interaction have been observed for transgenic loci. The nature of the recipient genome, nature of the transgene and the interactions between them seem to contribute to the non-Mendelian segregation of transgenes.  相似文献   

18.
19.
20.
Extrachromosomal inheritance in bacteria   总被引:93,自引:0,他引:93  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号