首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transformed, hybrid Saccharomyces strains capable of simultaneous secretion of glucoamylase and alpha-amylase have been produced. These strains could carry out direct, one-step assimilation of starch, with conversion efficiency greater than 93% during a 5-day growth period. One of the transformants converted 92.8% of available starch into reducing sugars in only 2 days. Glucoamylase secretion by these strains resulted from expression of one or more chromosomal STA genes derived from Saccharomyces diastaticus. The strains were transformed by a plasmid (pMS12) containing mouse salivary alpha-amylase cDNA in an expression vector containing yeast alcohol dehydrogenase promoter and a segment of yeast 2 micron plasmid. The major starch hydrolysis product produced by crude amylases found in culture broths was glucose, indicating that alpha-amylase and glucoamylase acted cooperatively.  相似文献   

2.
A fusion gene which encoded a polypeptide comprised of 1116 amino acids was constructed using the alpha-amylase and glucoamylase cDNAs of Aspergillus shirousamii. When the fusion gene was expressed in Saccharomyces cerevisiae using a yeast expression plasmid under the control of the yeast ADH1 promoter, a bifunctional fusion protein (145 kDa) having both alpha-amylase and glucoamylase activities was secreted into the culture medium. The fusion protein had higher raw-starch-digesting activity than those of the original alpha-amylase and glucoamylase, and adsorbed onto raw starch like the glucoamylase. It was suggested that the characteristics are a result of the raw-starch-affinity site in the glucoamylase domain of the fusion protein.  相似文献   

3.
扣囊复膜酵母(Saccharomycopsis fibuligera)因具有较强的a-淀粉酶以及葡聚糖酶活性, 使其在以淀粉为唯一碳源的培养基上能够良好的生长。从其基因组中克隆了a-淀粉酶的编码区, 构建了由酵母磷酸甘油酸激酶基因(PGK1)启动子、酿酒酵母a-因子信号序列以及扣囊复膜酵母a-淀粉酶基因编码序列组成的基因表达盒。将该表达盒插入到质粒pPLZ-2的ILV2基因序列内部, 使其两翼具有ILV2基因的同源区。将该表达盒通过同源重组的方式整合到啤酒酵母工业菌株YSF-5的a-乙酰乳酸合成酶(AHAS)基因ILV2内部。在以淀粉为唯一碳源的培养基上进行转化子的筛选。通过多对引物PCR、a-淀粉酶活性以及AHAS活性分析对转化子进行鉴定, 得到一株具有a-淀粉酶分泌表达活性、较低AHAS活性, 并且发酵液中双乙酰产量也相对较低的啤酒酵母工程菌。该菌株在非选择压力条件下连续培养50代后仍然保持其遗传稳定性。还对pH、温度以及金属离子对该转化菌株的a-淀粉酶活性的影响进行了研究。由于所构建的菌株不含有非酵母来源的DNA, 所以生物安全性相对较高, 对酵母育种以及啤酒生产工业都具有较为重要的意义。  相似文献   

4.
Any one of three homologous genes - STA1, STA2 and STA3 - encoding glucoamylase isozymes I, II and III respectively, allows the Saccharomyces species to utilize starch as a sole carbon source. We show in this paper that glucoamylase II production can be increased 4-fold over the level produced by STA2 strains, by using a two-step fermentation and a yeast strain transformed with a high-copy-number plasmid carrying the STA2 gene. The accumulation of anomalous STA2 mRNA species, mainly differing at their 5' ends, and saturation of step(s) in the secretory pathway appear to be among the major factors limiting glucoamylase expression in synthetic media.  相似文献   

5.
Direct and efficient production of ethanol by fermentation from raw corn starch was achieved by using the yeast Saccharomyces cerevisiae codisplaying Rhizopus oryzae glucoamylase and Streptococcus bovis alpha-amylase by using the C-terminal-half region of alpha-agglutinin and the flocculation functional domain of Flo1p as the respective anchor proteins. In 72-h fermentation, this strain produced 61.8 g of ethanol/liter, with 86.5% of theoretical yield from raw corn starch.  相似文献   

6.
黑曲霉糖化酶在酿酒酵母中的表达和分泌   总被引:9,自引:0,他引:9  
从黑曲霉糖化酶高产株T2l合成的糖化酶cDNA,经5’端和3’端改造后克隆到酵母质粒YFDl8上,转化酿酒酵母。转化子的淀粉培养基平板检测,培养滤液蛋白电泳和糖化酶活力分析都表明,含有糖化酶基因表达质粒的酵母转化子能有效地分泌有功能的糖化酶到细胞外。实验证明酵母a园子启动子和分泌信号序列能促使黑曲霉糖化酶cDNA在酵母中表达和分泌.实验还表明.黑曲霉糖化酶原的翻译后加工序列很可能亦能被酵母识别,加工生成有功能的成熟的糖化酶。以上成功为构建有实用意义的淀粉水解酵母工程菌迈出了重要的一步。  相似文献   

7.
Lipomyces kononenkoae and Saccharomycopsis fibuligera possess highly efficient alpha-amylase and/or glucoamylase activities that enable both of these yeasts to utilize raw starch as a carbon source. Eight constructs containing the L. kononenkoae alpha-amylase genes (LKA1 and LKA2), and the S. fibuligera alpha-amylase (SFA1) and glucoamylase (SFG1) genes were prepared. The first set of constructs comprised four single gene cassettes each containing one of the individual amylase coding sequences (LKA1, LKA2, SFA1 or SFG1) under the control of the phosphoglycerate kinase gene (PGK1) promoter and terminator, while the second set comprised two single cassettes containing SFA1 and SFG1 linked to their respective native promoters and terminators. The third set of constructs consisted of two double-gene cassettes, one containing LKA1 plus LKA2 under the control of the PGK1 promoter and terminator, and the other SFA1 plus SFG1 controlled by their respective native promoters and terminators. These constructs were transformed into a laboratory strain Saccharomyces cerevisiae (Sigma1278b). Southern-blot analysis confirmed the stable integration of the different gene constructs into the S. cerevisiae genome and plate assays revealed amylolytic activity. The strain expressing LKA1 and LKA2 resulted in the highest levels of alpha-amylase activity in liquid media. This strain was also the most efficient at starch utilization in batch fermentations, utilizing 80% of the available starch and producing 0.61g/100 mL of ethanol after 6 days of fermentation. The strain expressing SFG1 under the control of the PGK1 expression cassette gave the highest levels of glucoamylase activity. It was shown that the co-expression of these heterologous alpha-amylase and glucoamylase genes enhance starch degradation additively in S. cerevisiae. This study has resulted in progress towards laying the foundation for the possible development of efficient starch-degrading S. cerevisiae strains that could eventually be used in consolidated bioprocessing, and in the brewing, whisky, and biofuel industries.  相似文献   

8.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol.  相似文献   

9.
A stable strain of Saccharomyces cerevisiae secreting glucoamylase (EC 3.2.1.3) with high debranching activity was constructed using recombinant DNA technology. An expression cassette without bacterial sequences, containing Hormoconis resinae glucoamylase P cDNA and the dominant selection marker MEL1 was integrated into the yeast chromosome using ARS1 homology. The glucoamylase expression level of the integrant yeast strain was increased by chemical mutagenesis. The yeast strains secreting glucoamylase were able to grow on soluble starch (5%, w/v) and ferment it to ethanol.Correspondence to: A. Vainio  相似文献   

10.
cDNAs of barley α-amylase andA. niger glucoamylase were cloned in oneE. coli-yeast shuttle plasmid resulting in the construction of expression secretion vector pMAG15. pMAG15 was transformed intoS. cerevisiae GRF18 by protoplast transformation. The barley α-amylase andA. niger glucoamylase were efficiently expressed under the control of promoter and terminator of yeast PGK gene and their own signal sequence. Over 99% of the enzyme activity expressed was secreted to the medium. The recombinant yeast strain, S.cerevisiae GRF18 (pMAG15), hydrolyzes 99% of the starch in YPS medium containing 15% starch in 47 h. The glucose produced can be used for the production of ethanol. Project supported by the Guangdong Natural Science Foundation.  相似文献   

11.
Fermentation of corn starch to ethanol with genetically engineered yeast   总被引:1,自引:0,他引:1  
Expression of the glucoamylase gene from Aspergillus awamori by laboratory and distiller's strains of Saccharomyces cerevisiae allowed them to ferment soluble starch. Approximately 95% of the carbohydrates in the starch were utilized. Glycerol production was significantly decreased when soluble starch was used instead of glucose. Ethanol yield on soluble starch was higher than that on glucose. The rate of starch fermentation was directly related to the level of glucoamylase activity. Strains with higher levels of glucoamylase expression fermented starch faster. The decline in starch fermentation rates toward the end of the fermentation was associated with accumulation of disaccharides and limit dextrins, poor substrates for glucoamylase. The buildup of these products in continuous fermentations inhibited glucoamylase activity and complete utilization of the starch. Under these conditions maltose-fermenting strains had a significant advantage over nonfermenting strains. The synthesis and secretion of glucoamylase showed no deleterious effects on cell growth rates, fermetation rates, and fermentation products.  相似文献   

12.
Construction of a starch-utilizing yeast by cell surface engineering.   总被引:10,自引:2,他引:10       下载免费PDF全文
We have engineered the cell surface of the yeast Saccharomyces cerevisiae by anchoring active glucoamylase protein on the cell wall, and we have endowed the yeast cells with the ability to utilize starch directly as the sole carbon source. The gene encoding Rhizopus oryzae glucoamylase with its secretion signal peptide was fused with the gene encoding the C-terminal half (320 amino acid residues from the C terminus) of yeast alpha-agglutinin, a protein involved in mating and covalently anchored to the cell wall. The constructed plasmid containing this fusion gene was introduced into S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter from S. cerevisiae. The glucoamylase activity as not detected in the culture medium, but it was detected in the cell pellet fraction. The glucoamylase protein transferred to the soluble fraction from the cell wall fraction after glucanase treatment but not after sodium dodecyl sulfate treatment, indicating the covalent binding of the fusion protein to the cell wall. Display of the fused protein was further confirmed by immunofluorescence microscopy and immunoelectron microscopy. The transformant cells could surely grow on starch as the sole carbon source. These results showed that the glucoamylase was anchored on the cell wall and displayed as its active form. This is the first example of an application of cell surface engineering to utilize and improve the metabolic ability of cells.  相似文献   

13.
Glucoamylase produced by amylolytic strains of Saccharomyces cerevisiae (var. diastaticus) lacks a starch binding domain that is present in homologous glucoamylases from Aspergillus niger and other filamentous fungi. The absence of the binding domain makes the enzyme inefficient against raw starch and hence unsuitable for most biotechnological applications. We have constructed a hybrid glucoamylase-encoding gene by in-frame fusion of the S. cerevisiae STA1 gene and DNA fragment that encodes the starch binding domain of A. niger glucoamylase. The hybrid enzyme resulting from expression of the chimeric gene in S. cerevisiae has substrate binding capability and hydrolyses insoluble starch, properties not present in the original yeast enzyme.  相似文献   

14.
15.
Trichosporon pullulans IGC 3488 produced extracellular alpha-amylase and glucoamylase activities when grown in batches in a medium containing corn steep liquor and soluble starch or corn starch. alpha-Amylase, unlike glucoamylase activity, was secreted biphasically. For both amylases the maximum concentration was found in stationary phase cultures. The amylolytic enzymes, previously concentrated by ammonium sulfate precipitation, were separated into a glucoamylase fraction and an alpha-amylase fraction by Ultrogel AcA 54 gel filtration. Pullulanase activity was located in the glucoamylase fraction, whereas cyclodextrinase activity was restricted to the alpha-amylase fraction. Isoamylase and alpha-glucosidase were not detected. Electrophoretic analysis showed that alpha-amylase activity was due to a single protein. Glucoamylase, however, occurred in multiple forms. The four glucoamylases and the alpha-amylase were glycoproteins.  相似文献   

16.
Y Nakamura  T Sato  M Emi  A Miyanohara  T Nishide  K Matsubara 《Gene》1986,50(1-3):239-245
A cDNA fragment coding for human salivary alpha-amylase precursor was joined to the promoter of the Saccharomyces cerevisiae PHO5 gene, and the recombinant gene was inserted into a vector plasmid capable of autonomous replication in yeast. Yeast cells transformed with this recombinant plasmid synthesized about 5 X 10(5) molecules of the enzyme per cell when synthesis was induced by deprivation of inorganic phosphate and released about half of the synthesized enzyme into the medium. The enzyme is stable, and exhibited the same specific activity as alpha-amylase in human saliva. The amylase-producing yeast grew on starch and produced alcohol.  相似文献   

17.
Summary The expression and secretion of Rhizopus oryzae glucoamylase were studied in the yeast Saccharomyces cerevisiae. Rhizopus oryzae glucoamylase was highly expressed and efficiently secreted into a medium to a high level (above 300 mg/l) under control of a yeast promoter and the original signal sequence. Excess expression of the secretable glucoamylase with high copy number plasmid slightly decreased growth of the transformant cells in glucose medium but not in fructose medium.  相似文献   

18.
α淀粉酶和糖化酶在酿酒酵母中的表达和分泌   总被引:2,自引:0,他引:2  
将地衣芽孢杆菌α-淀粉酶基因及黑曲霉糖化酶cDNA重组进大肠杆菌-酵母穿梭质粒,转化酿酒酵母,构建能分解淀粉的酵母工程菌。酶活力测定和酶学性质分析的结果显示:在酵母MF-α1因子及磷酸甘油酸激酶基因的启动子和终止信号的调控下,α-淀粉酶和糖化酶基因在酵母中获得高表达并向胞外分泌这两种酶。构建的酵母工程菌在含10%淀粉的培养基中6天内能水解97%的淀粉,重组质粒能在酵母中较稳定地存在。  相似文献   

19.
Summary The cloning of glucoamylase geneSTA using theSUC2 promoter intoSaccharomyces cerevisiae was performed. The signal sequence ofSTA gene was used for the secretion of glucoamylase protein. The plasmid constructed in this way was named YEpSUCSTA and its expression was identified. The expression of YEpSUCSTA was repressed in the presence of glucose in growth medium, but derepressed when glucose became depleted. YEpSUCSTA showed the similar efficiency of glucoamylase secretion as YEpSTA-F which has the entireSTA gene. Glucoamylase activity in starch-glucose medium was largely increased because cell mass and plasmid stability were high in biosynthesis phase compared to extracellular glucoamylase activities in media which starch or glucose was the only carbon source.  相似文献   

20.
Alcohol fermentation of starch was investigated using a direct starch fermenting yeast, Saccharomyces cerevisiae SR93, constructed by integrating a glucoamylase-producing gene (STA1) into the chromosome of Saccharomyces cerevisiae SH1089. The glucoamylase was constitutively produced by the recombinant yeast. The ethanol concentration produced by the recombinant yeast was 14.3 g/L which was about 1.5-fold higher than by the conventional mixed culture using an amylolytic microorganism and a fermenting microorganism. About 60% of the starch was converted into ethanol by the recombinant yeast, and the ethanol yield reached its maximum value of 0.48 at the initial starch concentration of 50 g/L. The fed-batch culture, which maintains the starch concentration in the range of 30 to 50 g/L, was used to produce a large amount of ethanol from starch. The amount of ethanol produced in the fed-batch culture increased about 20% compared to the batch culture. (c) 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号