首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sulfapyridine (SP) and 5-aminosalicylic acid (5-ASA) are the two primary metabolites of the anti-inflammatory drug salicylazosulfapyridine (SASP). These two metabolites were studied for induction of chromosomal damage in mammalian cells, in vitro and in vivo, in an attempt to understand better the genetic effects produced by SASP in humans and laboratory mice. To this end, SP and 5-ASA were tested for induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Abs) in Chinese hamster ovary (CHO) cells in vitro. In addition, they were tested in vivo for induction of micronuclei (MN) in mouse bone marrow polychromatic erythrocytes (PCE). SP gave positive results in the in vitro SCE test and the in vivo MN test, and negative results in the in vitro Abs test. 5-ASA was negative in all three tests. These results indicate that it is the SP metabolite of SASP that is necessary for the induction of chromosomal damage reported to occur in humans and mice after treatment with SASP.  相似文献   

2.
We determined the kinetics of the induction of chromosomal aberrations and micronuclei (MN) by mitomycin C (MMC, 0.1 µg/ml) in Chinese hamster ovary (CHO) cells treated with cytochalasin B (Cyt-B, 3 µg/ml). In cells treated with Cyt-B as well as with Cyt-B plus MMC the highest yield of binucleated cells was obtained 24 h after treatment. After 40 h of treatment with Cyt-B the frequency of MN in binucleated cells was significantly higher than that observed at previous times in the same cultures as well as in controls. In cultures treated with MMC the frequency of MN increased with time, reaching the highest value at 24 h. The frequency of chromosomal aberrations was also significantly higher in cells treated both with Cyt-B and Cyt-B plus MMC than in controls and exceeded that of MN in parallel cultures. These data confirm the capacity of MMC to induce chromosomal alterations in mammalian cells; in particular they indicate that Cyt-B is able to induce cytogenetic effects in CHO cells. Using immunofluorescence microscopy, after reaction with CREST antikinetochore antibodies, we found that in cells treated with Cyt-B or Cyt-B plus MMC the frequency of MN without kinetochore was, respectively, about 70 and 85%, indicating that under our experimental conditions MN originate mainly from acentric chromatid fragments. Present data suggest that the method based on the blockage of cytokinesis by Cyt-B normally used in the MN assay should be reconsidered.  相似文献   

3.
The in vitro micronucleus (MN) test was carried out simultaneously with the conventional chromosomal aberration (CA) test on 11 clastogenic chemicals or spindle poisons with different modes of action using a Chinese hamster cell line (CHL). The method of slide preparation for the MN test was the same as that for the conventional metaphase analysis, except that 1% acetic acid in methanol was used as the cell suspension medium for air-drying (to preserve the cytoplasm around the nucleus). All chemicals tested induced micronuclei reproducibly and dose-dependently in good agreement with the results of metaphase analysis (r = 0.99). Since the MN test methodology is simple and the observation of MN is less subjective than that of CA, we conclude that the in vitro MN test would be a good alternative to the conventional CA test for screening the genotoxicity of chemicals.  相似文献   

4.
The frequency of kinetochore (centromere)-positive micronuclei (MN) was determined in 32 fibroblast cell lines. We tested 16 probands with spontaneously high MN levels (greater than or equal to 20 MN/500 cells (4%] and 8 probands (controls) with low MN levels (less than or equal to 13 MN/500 cells (2.6%]. To study whether the elevation of MN levels is due to increased chromosomal breakage we used the antikinetochore antibody fluorescent staining method. Probands with spontaneously high MN had kinetochore-positive MN increased by a factor 2.1 compared to the controls whereas the kinetochore-negative MN were increased by a factor 6.14. This shows that spontaneous elevation of MN is mainly caused by increased chromosomal breakage and only in a minor proportion by chromosome segregation errors as a consequence of spindle defects.  相似文献   

5.
The genotoxic activities of three cancer chemopreventive drug candidates, CP-31398 (a cell permeable styrylquinazoline p53 modulator), SHetA2 (a flexible heteroarotinoid), and phospho-ibuprofen (PI, a derivative of ibuprofen) were tested. None of the compounds were mutagenic in the Salmonella/Escherichia coli/microsome plate incorporation test. CP-31398 and SHetA2 did not induce chromosomal aberrations (CA) in Chinese hamster ovary (CHO) cells, either in the presence or absence of rat hepatic S9 (S9). PI induced CA in CHO cells, but only in the presence of S9. PI, its parent compound ibuprofen, and its moiety diethoxyphosphoryloxybutyl alcohol (DEPBA) were tested for CA and micronuclei (MN) in CHO cells in the presence of S9. PI induced CA as well as MN, both kinetochore-positive (Kin+) and -negative (Kin-), in the presence of S9 at ≤100μg/ml. Ibuprofen was negative for CA, positive for MN with Kin+ at 250μg/ml, and positive for MN with Kin- at 125 and 250μg/ml. DEPBA induced neither CA nor MN at ≤5000μg/ml. The induction of chromosomal damage in PI-treated CHO cells in the presence of S9 may be due to its metabolites. None of the compounds were genotoxic, in the presence or absence of S9, in the GADD45α-GFP Human GreenScreen assay and none induced MN in mouse bone marrow erythrocytes.  相似文献   

6.
A collaborative study with 10 participating laboratories was conducted to evaluate a test protocol for the performance of the in vitro micronucleus (MN) test using the V79 cell line with one treatment and one sampling time only. A total of 26 coded substances were tested in this study for MN-inducing properties. Three substances were tested by all 10 laboratories and 23 substances were tested by three or four laboratories in parallel. Six aneugenic, 7 clastogenic and 6 non-genotoxic chemicals were uniformly recognised as such by all laboratories. Three chemicals were tested uniformly negative by three laboratories although also clastogenic properties have been reported for these substances. Another set of three clastogenic substances showed inconsistent results and one non-clastogenic substance was found to be positive by one out of three laboratories. Within the study, the applicability of the determination of a proliferation index (PI) as an internal cytotoxicity parameter in comparison with the determination of the mitotic index (MI) was also evaluated. Both parameters were found to be useful for the interpretation of the MN test result with regard to the control of cell cycle kinetics and the mode of action for MN induction. The MN test in vitro was found to be easy to perform and its results were mainly in accordance with results from chromosomal aberration tests in vitro.  相似文献   

7.
Methylenedi-p-phenyl diisocyanate (MDI) is widely used in the production of polyurethane products. Diisocyanates are reactive compounds, MDI can react under physiological conditions with various functional groups found on biological molecules resulting in conjugate formation or undergo non-enzymatic hydrolysis to form 4,4'-methylenedianiline (MDA). We have previously reported that addition of MDI directly to Chinese hamster lung fibroblasts (V79) cultures did not induce micronuclei (MN), but MDA, and the glutathione and cysteine conjugates of MDI (BisGS-MDI and BisCYS-MDI), induced a concentration-dependent increase in the frequency of MN. The conventional MN assay does not discriminate between MN produced by acentric chromosome fragments from those arising due to whole lagging chromosomes that were not incorporated into daughter nuclei at the time of cell division. The mechanism of MN induction from these potential MDI metabolites/reaction products was explored in the present study using immunofluorescent staining of kinetochore in MN of cytokinesis-blocked V79 cells. This assay discerns the presence of centromere within the MN to distinguish the MN containing centric chromosomes from those containing acentric fragments. Eighty five percent of MDA-induced MN were negative with respect to anti-kinetochore antibody binding (KC(-)). This is consistent with an interaction between MDA and DNA resulting in chromosome breakage. However, BisGS-MDI and BisCYS-MDI induced a higher percentage of MN that were positively stained by the anti-kinetochore antibody (KC(+)). These results suggest that the mechanism of MN formation induced by BisGS-MDI and BisCYS-MDI is mediated through disruption and/or by affecting the function of the mitotic spindle. This mechanism is distinctly different from the mechanism of MN induction by MDA.  相似文献   

8.
A number of mechanisms are responsible for the resistance of spores of Bacillus species to heat, radiation and chemicals and for spore killing by these agents. Spore resistance to wet heat is determined largely by the water content of spore core, which is much lower than that in the growing cell protoplast. A lower core water content generally gives more wet heat-resistant spores. The level and type of spore core mineral ions and the intrinsic stability of total spore proteins also play a role in spore wet heat resistance, and the saturation of spore DNA with alpha/beta-type small, acid-soluble spore proteins (SASP) protects DNA against wet heat damage. However, how wet heat kills spores is not clear, although it is not through DNA damage. The alpha/beta-type SASP are also important in spore resistance to dry heat, as is DNA repair in spore outgrowth, as Bacillus subtilis spores are killed by dry heat via DNA damage. Both UV and gamma-radiation also kill spores via DNA damage. The mechanism of spore resistance to gamma-radiation is not well understood, although the alpha/beta-type SASP are not involved. In contrast, spore UV resistance is due largely to an alteration in spore DNA photochemistry caused by the binding of alpha/beta-type SASP to the DNA, and to a lesser extent to the photosensitizing action of the spore core's large pool of dipicolinic acid. UV irradiation of spores at 254 nm does not generate the cyclobutane dimers (CPDs) and (6-4)-photoproducts (64PPs) formed between adjacent pyrimidines in growing cells, but rather a thymidyl-thymidine adduct termed spore photoproduct (SP). While SP is formed in spores with approximately the same quantum efficiency as that for generation of CPDs and 64PPs in growing cells, SP is repaired rapidly and efficiently in spore outgrowth by a number of repair systems, at least one of which is specific for SP. Some chemicals (e.g. nitrous acid, formaldehyde) again kill spores by DNA damage, while others, in particular oxidizing agents, appear to damage the spore's inner membrane so that this membrane ruptures upon spore germination and outgrowth. There are also other agents such as glutaraldehyde for which the mechanism of spore killing is unclear. Factors important in spore chemical resistance vary with the chemical, but include: (i) the spore coat proteins that likely react with and detoxify chemical agents; (ii) the relative impermeability of the spore's inner membrane that restricts access of exogenous chemicals to the spore core; (iii) the protection of spore DNA by its saturation with alpha/beta-type SASP; and (iv) DNA repair for agents that kill spores via DNA damage. Given the importance of the killing of spores of Bacillus species in the food and medical products industry, a deeper understanding of the mechanisms of spore resistance and killing may lead to improved methods for spore destruction.  相似文献   

9.
The anticlastogenic potency of the ethanolic extract of a medicinal plant, C. aromaticus was investigated by taking bone marrow chromosomal aberration assay and micronucleus (MN) test as the test parameters. Swiss albino mice were fed orally with different doses (10,15, 25, 50 and 100 mg/kg body weight) of ethanolic extract for 7 days and on the 7th day, two doses each of anticancer drugs cyclophosphamide (CP; 25 and 50 mg/kg body weight) and mitomycin-C (MMC; 4 and 8 mg/kg body weight) were injected, ip, to different groups of animals. Bone marrow MN preparations were made at 24 and 48 hr time intervals. Coleus extract reduced CP and MMC induced MN and lower doses of the extract were found to be more effective than higher doses. The effective doses of extract in MN test were selected to study the anticlastogenic effects against CP (25 and 50 mg/kg body weight) and MMC (2 and 4 mg/kg body weight) induced chromosomal aberrations. The results indicate the protective effect of C. aromaticus against CP and MMC induced cytogenetic damage.  相似文献   

10.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

11.
The ability of intraperitoneally administered cadmium chloride (0.42-6.75 mg/kg) to induce genotoxic damage in somatic and germ cells of mice was evaluated using chromosomal aberrations, sister-chromatid exchanges (SCE), micronuclei and sperm-head abnormalities as end-points. A significant increase in the frequency of chromosomal aberrations and SCEs was observed in almost all treated series when compared to the negative control. Micronucleus formation in polychromatic erythrocytes was not affected significantly except at the highest concentration used (6.75 mg/kg). Significant differences were observed in the frequency of sperm with abnormal head morphology at all concentrations tested except the lowest one. The clastogenic effects of cadmium chloride in both somatic and germinal cells are found to depend directly on the concentrations used.  相似文献   

12.
Studies on the induction and persistence of ethylene oxide (EO) induced chromosomal alterations in rat bone-marrow cells and splenocytes following in vivo exposure were carried out. Rats were exposed to ethylene oxide either chronically by inhalation (50-200ppm, 4 weeks, 5 days/week, 6h/day) or acutely by intraperitoneal injection (i.p.) at dose levels of 50-100ppm.Spontaneous- and induced-frequencies of micronuclei (MN), sister-chromatid exchanges (SCEs) and chromosomal aberrations were determined in rat bone-marrow cells, and in splenocytes following in vitro mitogen stimulation. Unstable chromosomal aberrations were studied in whole genome using standard Giemsa staining technique and fluorescence in situ hybridisation using probe for chromosome #2 was employed to detect chromosome translocations.Following chronic exposure, the cytogenetic analyses were carried out at days 5 and 21 in rat splenocytes, to study the induction and persistence of sister-chromatid exchanges. Following chronic exposure, ethylene oxide was effective in inducing SCEs, and markedly cells with high frequency SCEs were observed and they in-part persisted until day 21 post-exposure. However, no significant effect was observed in rat splenocytes for induction of MN and chromosomal aberrations. Following acute exposure, both SCEs and MN were increased significantly in rat bone-marrow cells as well as splenocytes.In conclusion, this study indicates that ethylene oxide at the concentrations employed by intraperitoneal injection or inhalation in adult rats is mutagenic and can induce both SCEs and MN.  相似文献   

13.
The induction of chromosome damage in cultured human lymphocytes by in vitro treatments with aphidicolin (APC) and bleomycin (BLM) has been proposed as test of sensitivity to mutagens. To assess their validity, we have investigated whether the individual expression of induced chromosome damage has a genetic rather than an environmental basis. Metaphase analysis for chromosomal aberrations (CA) and micronucleus (MN) assay in cytokinesis-blocked cells have been performed in peripheral blood lymphocytes from 19 healthy male twins (9 monozygotic and 10 dizygotic pairs), aged 70-78 years, after APC, BLM and APC+BLM treatments.Concordance between twins revealed a high genetic component in the sensitivity towards clastogenic action of APC both as percentages of CA and MN. The micronucleus assay demonstrated a genetic basis also in the expression of chromosome damage induced by BLM and APC+BLM treatments. Since twins were elderly people, to investigate the possible role of age, CA and MN frequencies were compared with those found in lymphocytes from 11 young male donors. Basal and APC-induced chromosome damage were clearly increased in the former. Following BLM and APC+BLM treatments, age significantly increased mitotic delay, as shown by the mitotic indexes (MI) and by the ratios between binucleated and mononucleated (B/M) cells.  相似文献   

14.
We have already found that the in vivo skin comet assay is useful for the evaluation of primary DNA damage induced by genotoxic chemicals in epidermal skin cells. The aim of the present study was to evaluate the sensitivity and specificity of the combined in vivo skin comet assay and in vivo skin micronucleus (MN) test using the same animal to explore the usefulness of the new test method. The combined alkaline comet assay and MN test was carried out with three chemicals: 4-nitroquinoline-1-oxide (4NQO), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and benzo[a]pyrene (B[a]P). In the first experiment, we compared DNA- and chromosome-damaging effects of 3 [72, 24 and 3 hours (h) before sacrifice] and 4 applications (72, 48, 24 and 3h before sacrifice) of 4NQO, which induces dermal irritancy. The animals were euthanized and their skin was sampled for the combination test. As a result, the 4-application method was able to detect both DNA- and chromosome-damaging potential with a lower concentration; therefore, in the second experiment, MNNG and B[a]P were topically applied four times, respectively. The animals were euthanized, and then their skins were sampled for combination tests. In the alkaline comet assay, significant differences in the percent of DNA (%DNA) in the tail were observed in epidermal skin cells treated with MNNG and B[a]P. In the MN test, an increased frequency of MN cells (%MN) cells was observed by treatment with MNNG; however, there were no significant increases. In contrast, significant differences in %MN were observed by treatment with B[a]P. From these results, we conclude that the combined in vivo skin comet assay and in vivo MN test was useful because it can detect different genotoxicity with the same sampling time and reduce the number of animals used.  相似文献   

15.
Although alcohol is known to be a carcinogen for humans, ethanol-genotoxicity studies are incomplete. Ethanol seems not to be a bacterial mutagen, but the results are conflicting in rodent assays. We investigate the genotoxicity in the bone marrow micronucleus (MN) test and in the dominant lethal mutation (DLM) assay using two long-term ethanol exposure protocols. In the MN test, mice consumed three doses (5, 10 and 15% v/v) for 32 weeks. MN induction was compared to two control groups of 5- and 38-week-old mice (the ages of the treated mice when the treatment was initiated and when they were killed, respectively). For the three groups treated with ethanol there was no significant increase in MN induction as compared to the first control group, but observed MN frequencies were significantly lower than in the 38-week-old control group. This suggests a protective effect against genotoxic damage caused by aging, probably due to ethanol action as a hydroxyl radical scavenger. In the DLM assay, male mice drank ethanol at 15% or 30% (v/v) for 20 weeks. In both groups the number of dead implants was similar to the control, but there was a significant reduction in total implants, indicating a pre-implantation loss.  相似文献   

16.
《Translational oncology》2020,13(8):100783
The formation of micronuclei (MN) is prevalent in human cancer cells and its role in activating the senescence-associated secretory phenotype (SASP) machinery has been identified recently. However, the role of MN in regulation of SASP signaling still needs to define in practical cancers. Here, we reported that in colorectal cancer cells the expression of NAT10 (N-acetyltransferase 10) could mediate MN formation through DNA replication and NAT10-positive MN could activate SASP by binding to cGAS. The chemical inhibition of NAT10 by Remodelin or genomic depletion could markedly reduce MN formation, SASP activation, and senescence in colorectal cancer cells. Cell stress such as oxidative or hypoxia could upregulate NAT10 and its associated MN formation senescence and expression of SASP factors. Statistical analysis of clinical specimens revealed correlations between NAT10 expression, MN formation, SASP signaling, and the clinicopathological features of colorectal cancer. Our data suggest that NAT10 increasing MN formation and SASP pathway activation, promoting colorectal cancer progression.  相似文献   

17.
In vitro and in vivo cytogenetic effects of X-ray contrast media (CM) were determined by scoring micronuclei (MN) in 72-h cultures of human peripheral lymphocytes. Both ionic (sodium meglumine diatrizoate, methylglucamine diatrizoate, and sodium meglumine ioxaglate and nonionic CM (iosimide, iopromide, iohexol and iotrolan) were able to induce MN in lymphocytes. Based upon their calculated percent probabilities for MN induction, these agents could be ranked in their decreasing order of probability, as iosimide greater than sodium meglumine ioxaglate greater than iohexol greater than sodium meglumine diatrizoate greater than iopromide greater than methylglucamine diatrizoate greater than iotrolan. Stepwise logistic regression analysis of the data indicated that the frequency of MN in CM-exposed lymphocyte cultures was significantly higher than the frequency of MN in control cultures (P less than 0.001). In clinical studies where 14 patients were injected with an ionic CM methylglucamine diatrizoate, lymphocyte cultures from 10 patients showed higher frequencies of MN. The differences between pre- and post-CM counts of MN were significant in a Mann-Whitney U test (P less than 0.05). The effect of X-irradiation on MN formation in lymphocytes was separately determined and was found to be insignificant. These results indicate that irrespective of ionic and osmolality differences, X-ray contrast agents are capable of producing chromosomal damage in peripheral lymphocytes. Further studies are required to establish molecular mechanisms in the observed cytogenetic effects of CM in cell cultures.  相似文献   

18.
N-Acryloyl-N'-phenylpiperazine is a promoter of redox reactions synthesized recently, and proposed as an activator for the polymerization of acrylic resins for biomedical use. The chemical was analyzed for different genotoxicity endpoints, to obtain both information on its possible mutagenic/carcinogenic potential and a model analysis of a tertiary arylamine, which belongs to a class of chemicals commonly used as polymerization accelerators in the biomaterial field. The genotoxicity endpoints considered were: gene mutation in the Salmonella test; structural and numerical chromosome alterations in Chinese hamster V79 cells, evaluated by the micronucleus test together with an immunofluorescent staining specific for kinetochore proteins; in vitro and in vivo DNA damage, evaluated in V79 cells and in mouse liver by the alkaline DNA elution technique. On the whole, the results indicate that N-acryloyl-N'-phenylpiperazine is to be regarded not so much as a DNA-damaging agent, but as a genomic mutagen. Indeed, it was not mutagenic in Salmonella (though its toxicity did not allow testing concentrations over 70 micrograms/plate), and it was weakly positive in inducing chromosomal fragmentation in vitro (one positive, not dose-related, result out of five different doses tested) and in vivo DNA damage (increases in DNA elution rate never doubling control values). The chemical was, however, clearly positive (with dose-dependent effects up to about 25 times the control value) in causing numerical chromosome alterations, at the maximal non-toxic doses.  相似文献   

19.
《Mutation Research Letters》1993,301(4):223-227
Several known clastogens and mutagens have been tested for their ability to induce micronucleis (MN) using the cytokinesis-block method in mouse splenocytes. The chemicals were harringtonine, cisplatin, cytosine arabinoside, vincristine sulfate, colchicine, potassium chromate, methyl methanesulfonate and 2-acetylaminofluorence. All chemicals tested induced a dose-dependent increase in MN and a delay in cell-cycle progression. The results suggest that the cytokinesis-block micronucleus method in mouse splenocytes in reliable, economical and sensitive enough for detecting mutagenic agents in vivo and in vitro.  相似文献   

20.
Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号