首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Echinacea purpurea cv. Bravado and Magnus have been reported to be intermediate daylength plants (IDP) which flower in response to photoperiods between 13 and 16 h. The present experiments with E. purpurea cv. Bravado show that E. purpurea is actually a dual induction short-long-day plant which flowers promptly and consistently when grown in short day (SD) followed by long day (LD) conditions, but not with the reverse sequence of photoperiods. The flowering response increased with increasing duration of both the SD and the LD treatments. A minimum of 4 weeks of SD followed by 12 LD was required for complete flowering. No flowering occurred in continuous SD or LD, whereas a high proportion of plants flowered in continuous 14-h daylength. However, flowering was more variable in intermediate daylength than after transition from SD to LD. Furthermore, photoperiods between 13 and 16 h could satisfy both the primary SD induction and the secondary LD induction requirements. As a number of dual induction plants, both short-long-day and long-short-day plants, have such an overlapping window of effective photoperiods that can trigger both the SD and LD responses, the rationale for maintaining IDP as a separate and genuine flowering response group is seriously challenged.  相似文献   

2.
Ofir M  Kigel J 《Annals of botany》2006,97(4):659-666
BACKGROUND AND AIMS: The timing of flowering and summer dormancy induction plays a central role in the adaptation of Mediterranean geophytes to changes in the length of the growth season along rainfall gradients. Our aim was to analyse the role of the variation in the responses of flowering and summer dormancy to vernalization, daylength and growth temperature for the adaptation of Poa bulbosa, a perennial geophytic grass, to increasing aridity. METHODS: Flowering and dormancy were studied under controlled daylengths [9 h short day (SD) vs. 16 h long day (LD)] and temperatures (16/10, 22/16 and 28/22 degrees C day/night) in four ecotypes originating in arid, semi-arid and mesic habitats (110, 276 and 810 mm rain year(-1), respectively) and differing in flowering capacity under natural conditions: arid-flowering, semi-arid-flowering, semi-arid-non-flowering and mesic-non-flowering. KEY RESULTS: Flowering and dormancy were affected in opposite ways by daylength and growth temperature. Flowering occurred almost exclusively under SD. In contrast, plants became dormant much earlier under LD than under SD. In both daylengths, high temperature and pre-chilling (6 weeks at 5 degrees C) enhanced dormancy imposition, but inhibited or postponed flowering, respectively. Induction of flowering and dormancy in the different ecotypes showed differential responsiveness to daylength and temperature. Arid and semi-arid ecotypes had a higher proportion of flowering plants and flowering tillers as well as more panicles per plant than mesic ecotypes. 'Flowering' ecotypes entered dormancy earlier than 'non-flowering' ecotypes, while the more arid the site of ecotype origin, the earlier the ecotype entered dormancy. CONCLUSIONS: Variation in the flowering capacity of ecotypes differing in drought tolerance was interpreted as the result of balanced opposite effects of daylength and temperature on the flowering and dormancy processes.  相似文献   

3.
Flowering requirements of three Scandinavian cultivars of Dactylis glomerata L. have been studied in controlled environments. At temperatures ranging from 9 to 21°C optimal flowering required 10 weeks of exposure to short days (SD) followed by exposure to long days (LD). Only a few plants flowered in continuous LD and no primary induction took place in any daylength at 24 or 27°C. However, at a temperature of 3°C primary induction occurred also in 24 h LD, but more than 20 weeks of treatment were required for 100% flowering. The critical photoperiod for secondary induction was about 12–13 h, depending on the latitude of origin of the cultivar. A critical number of 12 to 16 LD cycles was required for 100% flowering, although some plants flowered after only 4 LD. A high proportion of viviparous proliferation resulted from marginal LD induction. Initiation of floral primordia did not take place in SD but required a transition from SD to LD. These results demonstrate that D. glomerata is a true short-long-day plant.  相似文献   

4.
Floral induction and development requirements of a range of latitudinal and altitudinal Norwegian populations of the wild strawberry Fragaria vesca L. have been studied in controlled environments. Rooted runner plants were exposed to a range of photoperiods and temperatures for 5 weeks for floral induction and then transferred to long day (LD) at 20°C for flower development. A pronounced interaction of temperature and photoperiod was shown in the control of flowering. At 9°C, flowers were initiated in both short day (SD) and LD conditions, at 15 and 18°C in SD only, whereas no initiation took place at 21°C regardless of daylength conditions. The critical photoperiod for SD floral induction was about 16 h and 14 h at 15 and 18°C, respectively, the induction being incomplete at 18°C. The optimal condition for floral induction was SD at 15°C. A minimum of 4 weeks of exposure to such optimal conditions was required. Although the populations varied significantly in their flowering performance, no clinal relationship was present between latitude of origin and critical photoperiod. Flower development of SD-induced plants was only marginally advanced by LD conditions, while inflorescence elongation and runnering were strongly enhanced by LD at this stage. The main shift in these responses took place at photoperiods between 16 and 17 h. Unlike all other populations studied, a high-latitude population from 70°N ('Alta') had an obligatory vernalization requirement. Although flowering and fruiting in its native Subarctic environment and after overwintering in the field in south Norway, this population did not flower in the laboratory in the absence of vernalization, even with 10 or 15 weeks of exposure to SD at 9°C. Flowering performance in the field likewise indicated a vernalization requirement of this high-latitude population.  相似文献   

5.
Many plant species exhibit seasonal variation of flowering time in response to daylength. Arabidopsis (Arabidopsis thaliana) flowers earlier under long days (LDs) than under short days (SDs). This quantitative response to photoperiod is characterized by two parameters, the critical photoperiod (Pc), below which there is a delay in flowering, and the ceiling photoperiod (Pce), below which there is no further delay. Thus Pc and Pce define the thresholds beyond which maximum LD and SD responses are observed, respectively. We studied the quantitative response to photoperiod in 49 mutants selected for early flowering in SDs. Nine of these mutants exhibited normal Pce and Pc, showing that their precocious phenotype was not linked to abnormal measurement of daylength. However, we observed broad diversification in the patterns of quantitative responses in the other mutants. To identify factors involved in abnormal measurement of daylength, we analyzed the association of these various patterns with morphogenetic and rhythmic defects. A high proportion of mutants with altered Pce exhibited abnormal hypocotyl elongation in the dark and altered circadian periods of leaf movements. This suggested that the circadian clock and negative regulators of photomorphogenesis may contribute to the specification of SD responses. In contrast, altered Pc correlated with abnormal hypocotyl elongation in the light and reduced photosynthetic light-input requirements for bolting. This indicated that LD responses may be specified by positive elements of light signal transduction pathways and by regulators of resource allocation. Furthermore, the frequency of circadian defects in mutants with normal photoperiodic responses suggested that the circadian clock may regulate the number of leaves independently of its effect on daylength perception.  相似文献   

6.
Wheat is usually classified as a long day (LD) plant because most varieties flower earlier when exposed to longer days. In addition to LD, winter wheats require a long exposure to low temperatures (vernalization) to become competent for flowering. Here we show that in some genotypes this vernalization requirement can be replaced by interrupting the LD treatment by 6 weeks of short day (SD), and that this replacement is associated with the SD down-regulation of the VRN2 flowering repressor. In addition, we found that SD down-regulation of VRN2 at room temperature is not followed by the up-regulation of the meristem identity gene VRN1 until plants are transferred to LD. This result contrasts with the VRN1 up-regulation observed after the VRN2 down-regulation by vernalization, suggesting the existence of a second VRN1 repressor. Analysis of natural VRN1 mutants indicated that a CArG-box located in the VRN1 promoter is the most likely regulatory site for the interaction with this second repressor. Up-regulation of VRN1 under SD in accessions carrying mutations in the CArG-box resulted in an earlier initiation of spike development, compared to other genotypes. However, even the genotypes with CArG box mutations required LD for a normal and timely spike development. The SD acceleration of flowering was observed in photoperiod sensitive winter varieties. Since vernalization requirement and photoperiod sensitivity are ancestral traits in Triticeae species we suggest that wheat was initially a SD–LD plant and that strong selection pressures during domestication and breeding resulted in the modification of this dual regulation. The down-regulation of the VRN2 repressor by SD is likely part of the mechanism associated with the SD–LD regulation of flowering in photoperiod sensitive winter wheat. These authors contributed equally to this work  相似文献   

7.
Reversion of flowering in Glycine Max (Fabaceae)   总被引:1,自引:0,他引:1  
Photoperiodic changes, if occurring before a commitment to flowering is established, can alter the morphological pattern of plant development. In this study, Glycine max (L.) Merrill cv. Ransom plants were initially grown under an inductive short-day (SD) photoperiod to promote flower evocation and then transferred to a long-day (LD) photoperiod to delay flower development by reestablishing vegetative growth (SD-LD plants). Some plants were transferred back to SD after 4-LD exposures to repromote flowering (SD-LD-SD plants). Alterations in organ initiation patterns, from floral to vegetative and back to floral, are characteristic of a reversion phenomenon. Morphological features that occurred at the shoot apical meristem in SD, LD, SD-LD, and SD-LD-SD plants were observed using scanning electron microscopy (SEM). Reverted plants initiated floral bracts and resumed initiation of trifoliolate leaves in the two-fifths floral phyllotaxy prior to terminal inflorescence development. When these plants matured, leaf-bract intermediates were positioned on the main stem instead of trifoliolate leaves. Plants transferred back to a SD photoperiod flowered earlier than those left in LD conditions. Results indicated that in plants transferred between SDs and LDs, photoperiod can influence organ initiation in florally evoked, but not committed, G. max plants.  相似文献   

8.
Potatoes (Solanum tuberosum L.) are highly productive in mid- to high-latitude areas where photoperiods change significantly throughout the growing season. To study the effects of changes in photoperiod on growth and tuber development of potato cv. Denali, plants were grown for 112 d with 400 micromol m-2 s-1 photosynthetic photon flux (PPF) under a 12-h photoperiod (short days, SD), a 24-h photoperiod (long days, LD), and combinations where plants were moved between the two photoperiods 28, 56, or 84 d after planting. Plants given LD throughout growth received the greatest total daily PPF and produced the greatest tuber yields. At similar levels of total PPF, plants given SD followed by LD yielded greater tuber dry mass (DM) than plants given LD followed by SD. Stem DM per plant, leaf DM, and total plant DM all increased with an increasing proportion of LD and increasing daily PPF, regardless of the daylength sequence. When studies were repeated, but at an enriched (1000 micromol mol-1) CO2 concentration, overall growth trends were similar, with high CO2 resulting in greater stem length, stem DM, leaf DM, and total plant DM; but high CO2 did not increase tuber DM.  相似文献   

9.
Microcebus murinus exhibits highly seasonal biological rhythms to cope with extreme seasonality in availability of resources. To study the role of daylength on seasonal changes in body mass and reproductive function, we exposed male and female gray mouse lemurs to natural, constant, or alternating light cycles for 2 years under constant environmental conditions. When exposed to either constant short (SD: 10 h light/day), long (LD: 14 h light/day), or intermediate (ID: 12 h light/day) daylength, males and females maintained a constant body mass with no spontaneous cyclic variation. We only observed typical seasonal body mass changes in subjects exposed to alternating periods of SD and LD, the weight gain being triggered by SD, whereas weight loss occurred under LD. Reproductive activity in females proceeded from an endogenous rhythm that was expressed under constant daylengths. In contrast, changes in reproductive activity in males depended on daylength variation. In both sexes, SD and LD have direct inhibitory or stimulatory effects on reproductive activity. In females, daylength regulates breeding season by synchronizing an endogenous sexual rhythm with the season, whereas in males, the perception of a critical photoperiod is used to determine the subsequent onset or arrest of their breeding season. These sexual differences in the effect of daylength could be related to sex-specific differences in reproductive constraints.  相似文献   

10.
11.
We have tested whether the promotion of flowering by long days(LD) in Arabidopsis thaliana is a consequence of photoperiodicinduction. To achieve this, the flowering responses of Arabidopsisthaliana (L.) Heynh. Landsberg erecta (Ler) and the long-hypocotylmutants hy2, hy3 and hy4 were determined with respect to age,daylength and light quality. Ler was capable of distinguishingbetween short days (SD) and long days (LD) from about 4 d aftersowing at 20 C, the time at which cotyledons were expandingand greening. At this stage, the critical daylength was between8 h and 10 h. At 7 d, seedlings required five LD for inductionand, as the seedlings aged, they became more sensitive so thatby day 20, one LD was fully inductive. The response to SD innewly germinated seedlings was to delay flowering without alteringleaf number, but after about 10 d, delay of flowering by SDwas accompanied by extra leaves. In light quality experiments,blue light (B) was inductive for 5-d-old plants and in all subsequenttreatments, far-red (FR) caused induction in treatments at 12d and 18 d and low pressure sodium, equivalent to red, was notinductive at 5 d and 12 d, but partially inductive at day 18.Hence, both a specific blue-light photoreceptor and phytochromeA in High Irradiance Response mode promote floral induction.In daylength transfer experiments all three hy mutants respondedto LD by earlier flowering. Both hy2 and hy3 produced substantiallyfewer leaves than Ler in SD and hy3 flowered slightly earlierthan Ler. The hy4 mutants flowered later than Ler in SD andhad a higher leaf number. A scheme is proposed in which photoperiodicinduction depends on the ability of the plant to sense photoperiod,the stage of development and the photobiological input. We alsopropose that phytochrome A and the blue photoreceptor promoteflowering whereas phytochrome B promotes vegetative development. Key words: Arabidopsis thaliana, blue-absorbing photoreceptor, flowering, photoperiodic induction, phytochrome  相似文献   

12.
Flowering requirements of the high-arctic and high-alpine snow bed grass species Phippsia algida (Sol.) R. Br. have been studied in controlled environments. Seedlings flowered rapidly in continuous long days (LD) at temperatures ranging from 9 to 21°C. They also initiated inflorescence primordia at the same temperatures in continuous short days (SD), whereas LD were required for heading and anthesis. The plant thus has the characteristics of a regular long day plant, although the daylength requirement is associated with floral development only. The critical daylength for the LD response was about 17 h at 21°C and 19 h at 9°C. A single LD cycle was enough to trigger inflorescence development, while 5 cycles were required for the full response. Anthesis was reached within a week of LD treatment at 21°C in SD grown plants with preformed inflorescence primordia. The advantages of these versatile flowering responses are discussed in relation to the extreme climatic regime of late snow bed sites.  相似文献   

13.
Jeong S  Clark SE 《Genetics》2005,169(2):907-915
Photoperiod has been known to regulate flowering time in many plant species. In Arabidopsis, genes in the long day (LD) pathway detect photoperiod and promote flowering under LD. It was previously reported that clavata2 (clv2) mutants grown under short day (SD) conditions showed suppression of the flower meristem defects, namely the accumulation of stem cells and the resulting production of extra floral organs. Detailed analysis of this phenomenon presented here demonstrates that the suppression is a true photoperiodic response mediated by the inactivation of the LD pathway under SD. Inactivation of the LD pathway was sufficient to suppress the clv2 defects under LD, and activation of the LD pathway under SD conditions restored clv2 phenotypes. These results reveal a novel role of photoperiod in flower meristem development in Arabidopsis. Flower meristem defects of clv1 and clv3 mutants are also suppressed under SD, and 35S:CO enhanced the defects of clv3, indicating that the LD pathway works independently from the CLV genes. A model is proposed to explain the interactions between photoperiod and the CLV genes.  相似文献   

14.
Flowering time and plant height are key agronomic traits that directly affect soybean (Glycine max) yield. APETALA1 (AP1) functions as a class A gene in the ABCE model for floral organ development, helping to specify carpel, stamen, petal, and sepal identities. There are four AP1 homologs in soybean, all of which are mainly expressed in the shoot apex. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR) – CRISPR‐associated protein 9 technology to generate a homozygous quadruple mutant, gmap1, with loss‐of‐function mutations in all four GmAP1 genes. Under short‐day (SD) conditions, the gmap1 quadruple mutant exhibited delayed flowering, changes in flower morphology, and increased node number and internode length, resulting in plants that were taller than the wild type. Conversely, overexpression of GmAP1a resulted in early flowering and reduced plant height compared to the wild type under SD conditions. The gmap1 mutant and the overexpression lines also exhibited altered expression of several genes related to flowering and gibberellic acid metabolism, thereby providing insight into the role of GmAP1 in the regulatory networks controlling flowering time and plant height in soybean. Increased node number is the trait with the most promise for enhancing soybean pod number and grain yield. Therefore, the mutant alleles of the four AP1 homologs described here will be invaluable for molecular breeding of improved soybean yield.  相似文献   

15.
The recent whole-plant research reviewed suggests the commonly applied paradigms about vernalization and photoperiodism should be replaced. A simple equation based on new paradigms predictively models with excellent fit the published days to flowering of at least six plant species. The paradigm that the response to photoperiod of the days to flowering (DTF) of crop plants is revealed adequately by comparing a range of photoperiods at just one temperature should be replaced with the following concepts. There is a base (lowest) temperature below which photoperiod gene activity does not occur, and, when the temperature is high enough to allow activity, there is always a photoperiod × temperature × genotype interaction effect on the days to flowering. Similarly, the paradigm that vernalization gene activity occurs at low temperature and promotes development should be replaced as follows. Vernalization gene activity occurs only if the temperature is above a base (lowest) temperature that allows activity of the vernalization gene(s), and this activity delays development to flowering. Development to flowering is accelerated by low-temperature vernalization, because the low temperature prevents vernalization gene activity, thereby preventing delay of the DTF. The phenomena called long-day (LD) vernalization and short-day (SD) vernalization are reinterpreted as follows. The apparent replacement by short or long daylength of a requirement for low-temperature vernalization is actually a replacement by the low temperature of a requirement for long or short day. Just as true low-temperature vernalization results from prevention of vernalization gene activity, these SD and LD promotions of the DTF occur because the photoperiod gene activity is prevented by the low temperature. Rather than requiring an environment that induces flowering, an inherent capability for rapid development to flowering is expressed, if there is no delay of the DTF by the activity of either or both of the vernalization and photoperiod gene(s). All the above-mentioned effects of temperature are due to the Q10 effect on the specified photoperiod or vernalization gene activity. The effect of thermal time (due to the accumulated growing degree days) is the integrated Q10 effect on all additional genes that partially control the rate of development to the reproductive stage.  相似文献   

16.

Background

Rice (Oryza sativa) and Arabidopsis thaliana have been widely used as model systems to understand how plants control flowering time in response to photoperiod and cold exposure. Extensive research has resulted in the isolation of several regulatory genes involved in flowering and for them to be organized into a molecular network responsive to environmental cues. When plants are exposed to favourable conditions, the network activates expression of florigenic proteins that are transported to the shoot apical meristem where they drive developmental reprogramming of a population of meristematic cells. Several regulatory factors are evolutionarily conserved between rice and arabidopsis. However, other pathways have evolved independently and confer specific characteristics to flowering responses.

Scope

This review summarizes recent knowledge on the molecular mechanisms regulating daylength perception and flowering time control in arabidopsis and rice. Similarities and differences are discussed between the regulatory networks of the two species and they are compared with the regulatory networks of temperate cereals, which are evolutionarily more similar to rice but have evolved in regions where exposure to low temperatures is crucial to confer competence to flower. Finally, the role of flowering time genes in expansion of rice cultivation to Northern latitudes is discussed.

Conclusions

Understanding the mechanisms involved in photoperiodic flowering and comparing the regulatory networks of dicots and monocots has revealed how plants respond to environmental cues and adapt to seasonal changes. The molecular architecture of such regulation shows striking similarities across diverse species. However, integration of specific pathways on a basal scheme is essential for adaptation to different environments. Artificial manipulation of flowering time by means of natural genetic resources is essential for expanding the cultivation of cereals across different environments.  相似文献   

17.
Summary Floral initiation in strawberry cv. Cambridge Favourite, a facultative short-day plant, was inhibited by a daylength extension with red light (R) during the second half of a 16-hour night but not during the first half, and by far-red light (FR) in the first half but not during the second. Mixed R plus FR light was inhibitory to flowering at both times. This change in sensitivity to R and FR light in the evening and morning resembles the pattern for flower induction in long-day plants but differs from the pattern for flower inhibition in several other short-day plants, examples of which are given. These experiments afford further support for the hypothesis that the control of flower initiation in strawberry depends on the production of a flower inhibitor by leaves exposed to long photoperiods.Abbreviations R red - FR far-red - SD short day - LD long day - SDP short-day plant - LDP long-day plant  相似文献   

18.
Plants of Phippsia algida (Sol.) R. Br. were cultivated in short days (SD; 8 h summer daylight) and in long days (LD; 8 h summer daylight + 16 h low irradiance extension of 5 μmol m−2 s−1) at 9, 15, and 21°C. In this plant, inflorescence primordia are initiated in both LD and SD, but LD are required for heading and inflorescence development (Heide, O.M.; Physiol. Plant. 85: 606–610. 1992). Total dry matter production was slightly increased by LD over SD at 9°C, while it was little affected by daylength at 15 and 21°C. Phippsia algida contained mainly fructans with a low degree of polymerization, largely of the kestose series. After 29 to 42 days (depending on the temperatature) of photoperiodic treatment, fructans constituted 15–20 percent of dry mass of SD-grown plants compared with only 2–3 percent of dry mass for LD-grown flowering plants. There was no difference due to photoperiod in levels of mono- and disaccharides. Shifting the SD-grown plants to LD conditions resulted in rapid inflorescence development, accompanied by a parallel rapid decrease in the fructan level, while the level of mono- and disaccharides remained constant. The results show that fructans are important as storage carbohydrates in the late snow-bed species P. algida that normally requires several growing seasons for completing its life cycle. Exhaustion of this storage pool during the extremely fast flower and fruit development constitutes an essential part of the plants adaption to a very short growing season.  相似文献   

19.

Background  

Growth cessation, cold acclimation and dormancy induction in grapevines and other woody perennial plants native to temperate continental climates is frequently triggered by short photoperiods. The early induction of these processes by photoperiod promotes winter survival of grapevines in cold temperate zones. Examining the molecular processes, in particular the proteomic changes in the shoot, will provide greater insight into the signaling cascade that initiates growth cessation and dormancy induction. To begin understanding transduction of the photoperiod signal, Vitis riparia Michx. grapevines that had grown for 35 days in long photoperiod (long day, LD, 15 h) were subjected to either a continued LD or a short photoperiod (short day, SD, 13 h) treatment. Shoot tips (4-node shoot terminals) were collected from each treatment at 7 and 28 days of LD and SD for proteomic analysis via two-dimensional (2D) gel electrophoresis.  相似文献   

20.
In Arabidopsis, expression of FLC and FLC-related genes (collectively called FLC clade) contributes to flowering time in response to environmental changes, such as day length and temperature, by acting as floral repressors. VIN3 is required for vernalization-mediated FLC repression and a VIN3 related protein, VIN3-LIKE 1/VERNALIZATION 5 (VIL1/VRN5), acts to regulate FLC and FLM in response to vernalization.13 VIN3 also exists as a small family of PHD finger proteins in Arabidopsis, including VIL1/VRN5, VIL2/VEL1, VIL3/VEL2 and VIL4/VEL3. We showed that the PHD finger protein, VIL2, is required for proper repression of MAF5, an FLC clade member, to accelerate flowering under non-inductive photoperiods. VIL2 acts together with POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) to repress MAF5 in a photoperiod dependent manner.Key words: photoperiod, chromatin, floweringThe decision to flower is critical to the survival of flowering plants. Thus, plants sense environmental cues to initiate floral transition at a time that both ensures and optimizes their own reproductive fitness. Using a model plant, Arabidopsis thaliana, genetic studies have shown that the regulation of floral transition mainly consists of four genetic pathways: the inductive photoperiod pathway, the autonomous pathway, the vernalization pathway and the gibberellin pathway.4 In Arabidopsis, these four flowering pathways eventually merge into a group of genes called floral integrators, including FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY). Based on the response to specific photoperiod conditions, the flowering behaviors of plants can be classified into three groups: long day (LD), short day (SD) and day neutral response.5,6 Depending on the requirement of day length, plants show either obligate or facultative responses. For example, henbane, carnation and ryegrass are obligate long day (LD) flowering plants which flower under increasing inductive photoperiod but do not flower at all under non-inductive photoperiod.5 On the other hand, plants including Arabidopsis, wheat, lettuce and barley, are considered to be facultative flowering plants. Thus, these plants exhibit early flowering under LD and late-flowering under non-inductive short days (SD). Studies on photoperiodic flowering time mainly focus on the inductive LD-photoperiod pathway in Arabidopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号