首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of sodium dependency of GABA uptake by satellite glial cells was studied in bullfrog sympathetic ganglia. GABA uptake followed simple Michaelis-Menten kinetics at all sodium concentrations tested. Increasing external sodium concentration increased bothK m andV max for GABA uptake, with an increase in theV max/K m ratio. The initial rate of uptake as a function of the sodium concentration exhibited sigmoid shape at 100 M GABA. Hill number was estimated to be 2.0. Removal of external potassium ion or 10 M ouabain reduced GABA uptake time-dependently. The effect of ouabain was potentiated by 100 M veratrine. These results suggest that at least two sodium ions are involved with the transport of one GABA molecule and that sodium concentration gradient across the plasma membrane is the main driving force for the transport of GABA. The essential sodium gradient may be maintained by Na+, K+-ATPase acting as an ion pump.  相似文献   

2.

Background

Nitric oxide (NO) is an important presynaptic modulator of synaptic transmission. Here, we aimed to correlate the release of the major inhibitory neurotransmitter GABA with intracellular events occurring in rat brain axon terminals during their exposure to NO in the range of nanomolar–low micromolar concentrations.

Methods

Using [3H]GABA and fluorescent dyes (Fluo 4-AM, acridine orange and rhodamine 6G), the following parameters were evaluated: vesicular and cytosolic GABA pools, intracellular calcium concentration, synaptic vesicle acidification, and mitochondrial membrane potential. Diethylamine NONOate (DEA/NO) and S-nitroso-N-acetylpenicillamine (SNAP) were used as NO donors.

Results

DEA/NO and SNAP (in the presence of dithiothreitol (DTT)) stimulated external Ca2 +-independent [3H]GABA release, which was not attributed to a rise in intracellular calcium concentration. [3H]GABA release coincided with increasing GABA level in cytosol and decreasing the vesicular GABA content available for exocytotic release. There was a strong temporal correlation between NO-induced increase in cytosolic [GABA] and dissipation of both synaptic vesicle proton gradient and mitochondrial membrane potential. Dissipation was reversible, and recovery of both parameters correlated in time with re-accumulation of [3H]GABA into synaptic vesicles. The molar ratio of DTT to SNAP determined the rate and duration of the recovery processes.

Conclusions

We suggest that NO can stimulate GABA release via GABA transporter reversal resulting from increased GABA levels in cytosol. The latter is reversible and appears to be due to S-nitrosylation of key proteins, which affect the energy status of the pre-synapse.

General significance

Our findings provide new insight into molecular mechanism(s) underlying the presynaptic action of nitric oxide on inhibitory neurotransmission.  相似文献   

3.
Effect of GABA and benzodiazepines on testicular androgen production   总被引:5,自引:0,他引:5  
We have evaluated the effect of Ro5-4864, a selective probe to label peripheral type benzodiazepine receptor, on "in vitro" testicular androgen production. Decapsulated testes from adult rats showed a significant increase in the basal and hCG-stimulated testosterone secretion into the medium in response to 10(-5) M, 10(-6) M, and 10(-7) M Ro5-4864. In addition, we have studied the changes in testicular GABA content at three different ages and we found its highest concentration at 31 days of age. When we evaluated the effect of GABA on "in vitro" androgen production at different stages of gonadal maturation we observed that the highest concentration of GABA (10(-6) M) was able to modify the basal and hCG-stimulated androgen production from adult (60 days) and pubertal (45 days) testes. In addition, when prepubertal testes (31 days) were incubated under basal conditions, 10(-6) M GABA induced a significant increment of androstanediol production, while the stimulatory effect of hCG was reduced in the presence of the same GABA concentration. The present results suggest that GABA plays a physiological role in the regulation of rat testicular androgen production depending on the stage of sexual maturation.  相似文献   

4.
The aim of the present paper was to determine whether the release of glutamate from putative "glutamergic" terminals in the cerebellum is influenced by gamma-aminobutyric acid (GABA). In a group of preliminary experiments, we present biochemical evidence in favour of a neurotransmitter role of glutamate in the cerebellum: (1) endogenous glutamate was released from depolarized cerebellar synaptosomal preparations in a Ca2+-dependent away; (2) [14C]glutamate was synthesized from [14C]glutamine in cerebellar synaptosomes, and the newly synthesized [14C]glutamate was released released in a Ca2+-dependent way; (3) the elevation of cyclic GMP elicited by depolarization of cerebellar slices in the presence of Ca2+ was partly reversed by the glutamate antagonist glutamic acid diethyl ester, which probably prevented the interaction of endogenously released glutamate with postsynaptic receptors. GABA and muscimol at low concentrations (2--20 micrometers) potentiated the depolarization-induced release of D-[3H]aspartate (a glutamate analogue which labels the glutamate "reuptake pool") from cerebellar synaptosomes. The effect was concentration dependent and was largely prevented by two GABA antagonists, bicuculline and picrotoxin. The stimulation of D-[3H]aspartate release evoked by muscimol was linearly related to the logarithm of K+ concentration in the depolarizing medium. GABA did not affect the overall release of endogenous glutamate, but potentiated, in a picrotoxin-sensitive manner, the depolarization-evoked release of [14C]glutamate previously synthesized from [14C]glutamine. Since nerve endings are the major site of glutamate synthesis from glutamine, GABA and muscimol appear to exert their stimulatory effect at the level of "glutamergic" nerve terminals, probably after interacting with presynaptic GABA receptors. The possible functional significance of these findings is briefly discussed.  相似文献   

5.
4-Hydroxybenzaldehyde (HBA) derivatives were examined as inhibitors for GABA transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Investigation of structure-activity relation revealed that a carbonyl group or an amino group as well as a hydroxy group at the para position of the benzene ring are important for both enzymes' inhibition. HBA was shown to give competitive inhibition of GABA-T with respect to alpha-ketoglutarate and competitive inhibition of SSADH. 4-Hydroxybenzylamine (HBM) also showed the competitive inhibition on GABA-T with respect to GABA. In conclusion, the inhibitory effects of HBA and HBM on both enzymes could result from the similarity between both molecules and the two enzymes' substrates in structure, as well as the conjugative effect of the benzene ring. This suggested that the presence of the benzene ring may be accepted by the active site of both enzymes, HBA and HBM may be considered as lead compounds to design novel GABA-T inhibitors.  相似文献   

6.
Nylon 4 is a biodegradable polymer which can be produced from the monomer of pyrrolidone. Gammaaminobutyric acid (GABA) is a precursor of pyrrolidone used for the production of bioplastics. In this study, Escherichia coli were engineered to produce gammaaminobutyric acid from glucose via an alternative novel pathway by the introduction of synthetic scaffolds. The GABA pathway constructed contained succinate dehydrogenase, succinate-semialdehyde dehydrogenase and GABA aminotransferase to redirect the Krebs cycle flux to GABA production. By introduction of a synthetic scaffold, production of 0.64 g/L GABA was achieved at 30°C and pH 6.5. Final GABA concentration was increased by 11.3% via the inactivation of competing pathways, and higher initial glucose concentration led to the enhanced final GABA concentration of 1.01 g/L.  相似文献   

7.
The [14C]GABA uptake by slices (0.3 mm thick) of Wistar rat brain cortex was studied for its dependence on the GABA concentration in the medium, time of incubation and the presence of Ca2+. This process is characterized by the absence of saturation; the uptake by slices increases sharply when the concentration of exogenous [14C]GABA reaches 200 microM. Bicucullin (10(-4) M), an antagonist of GABA, inhibits the accumulation of GABA in the concentration of 0.2 microM by 60%, that evidences for a considerable contribution of the receptor binding to this process. The [14C]GABA uptake when Ca2+ is absent in the incubation medium and when its concentration is 10(-3) M is practically the same and comparatively low concentrations of Ca2+ (10(-6)-10(-4] decrease the GABA uptake.  相似文献   

8.
Benzene-contaminated topsoil, with an organic content of 42%, was treated by an air volatilization process, followed by a two-phase partitioning bioreactor to allow benzene mineralization. The effects of moisture content and temperature on the adsorption and desorption of benzene on to soil were investigated, and 95% of the benzene (at a concentration equivalent to 3.7 kg benzene m–3 soil–1) was removed at 50°C by air volatilization. When 30 g soil was contaminated with 1000 mg benzene (a concentration 3 times higher), 93% of the benzene was removed by the air volatilization technique, of which 91% was consumed in a two-phase partitioning bioreactor within 2 h.  相似文献   

9.
Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.  相似文献   

10.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   

11.
为探讨γ-氨基丁酸(GABA)在植物生长发育中的调控机理,以含有3种不同浓度的GABA的1/2MS培养基培养烟草(Nicotiana tabacum)品种‘SR1’种子,结果表明:低浓度GABA(1mmol/L)促进了烟草幼苗的生长,主根的长度比对照高30%,同时该浓度处理提高了MAPK基因的表达水平;较高浓度(10~100mmol/L)GABA抑制了主根的伸长,表现出乙烯反应的效应。在叶和根中,ACS1基因表达水平的提高受不同浓度GABA的调节。MAPKACS1基因对GABA信号的不同表达模式可能与不同的信号途径有关。  相似文献   

12.
The concentration of gamma-aminobutyric acid (GABA) was determined in vas deferens, prostate, epididymis, seminal vesicle and testicle of the adult rat. Among the organs examined, vas deferens was found to be the richest in GABA and the lowest concentration was measured in testicle. Although the GABA levels appear to be 10-50 times lower in the sex organs examined than in the brain tissue, even the low GABA contents are suggestive of a role of this amino acid in the reproductive organs of the male rat.  相似文献   

13.
The effect of GABA on melatonin content in vitro was studied in the golden hamster retina. GABA significantly increased melatonin levels in a dose-dependent manner, its effect being reversed by a GABA(A) receptor antagonist, bicuculline, but not by saclofen, a GABA(B) antagonist. Moreover, an equimolar concentration of muscimol, a GABA(A) receptor agonist, significantly increased retinal melatonin content, whereas baclofen, a GABA(B) receptor agonist, was ineffective. The darkness-induced increase in melatonin content in vitro was inhibited by bicuculline, whereas saclofen was ineffective. Retinal GABA turnover rate was significantly higher at midnight than at midday. GABA significantly decreased cyclic AMP and increased cyclic GMP accumulation in the golden hamster retina. The effect of GABA on both nucleotide levels was reversed by bicuculline, but baclofen had no effect. Cyclic GMP analogues (i.e., 8-bromoguanosine 3',5'-cyclic monophosphate and 2'-O-dibutyrylguanosine 3',5'-cyclic monophosphate) significantly increased retinal melatonin content in vitro. Taken together, these results support the hypothesis that GABA may be important for the "dark message" in the hamster retina.  相似文献   

14.
A special microbial consortium adapted to degrade petroleum hydrocarbons at limited availability of oxygen, transformed benzene, a highly toxic and carcinogenic contaminant of groundwater and soil, at low initial dissolved oxygen (DO) concentrations of 0.05-2 mg/L. The employed initial concentrations of dissolved oxygen were considerably lower than the previously reported values. Under these conditions, the overall transformation of benzene ranged from 34% +/- 1.7% to 100%, considerably higher than the theoretical predictions for complete mineralization of benzene based on the requirement of 3.08 mg oxygen/mg benzene. Unlike biotransformation that proceeded at the lowest examined DO concentration of 0.05 mg/L, the mineralization of benzene, defined by its conversion to CO(2) and water, required a minimum DO concentration of 0.2 mg/L. The mineralization of benzene under microaerophilic conditions (DO < 2 mg/L), ranged from 0.83% +/- 0.06% to 89% +/- 1.3%, which was less than the theoretical predictions at any given initial DO concentration. The regulatory effects of dissolved oxygen concentration or its partial pressure on the activities of enzymes catalyzing the biotransformation of aromatic hydrocarbons was postulated to account for the reduced mineralization of benzene. The ratio between the transformed benzene and the consumed oxygen increased with the decrease of initial DO concentration, reaching a value of 2.8, considerably higher than the theoretical value of 0.33 obtained for a complete aerobic oxidation of benzene. Phenol was the major and the most stable intermediate metabolite during the biotransformation of benzene at low concentrations of DO. While benzene transformation stopped after the depletion of oxygen in the experimental system, phenol continued to accumulate under strictly anaerobic conditions, indicating its formation from an alternative carbon source, possibly biomass.  相似文献   

15.
Content of GABA was measured in cultured, normal astrocytes (from the brain cortex of newborn mice) together with the effect of nonradioactive GABA on the efflux of labeled GABA from cells previously loaded with [14C]GABA. An increase of external GABA concentration from 0 to 25 M evoked a rise of the GABA content in the cells to a level which was approximately 50 times that of the incubation medium. Neither 200 nor 2000 M nonradioactive GABA had any effect on the rate of release of radioactivity from cells loaded with [14C]GABA. Both the high tissue/medium ratio and the lack of a GABA-induced enhancement of the release of radioactivity indicate that the previously observed high-affinity uptake of GABA in cultured astrocytes represents a net uptake and not a homoexchange with endogenous GABA. This uptake is sodium dependent but was found to be unaffected in potassium-free media; the quantitative correlation between GABA transport and sodium transport differed from that reported for synaptosomes.  相似文献   

16.
The GABA transporter GAT1 removes the neurotransmitter GABA from the synaptic cleft by coupling of GABA uptake to the co-transport of two sodium ions and one chloride ion. The aim of this work was to investigate the individual reaction steps of GAT1 after a GABA concentration jump. GAT1 was transiently expressed in HEK293 cells and its pre-steady-state kinetics were studied by combining the patch-clamp technique with the laser-pulse photolysis of caged GABA, which allowed us to generate GABA concentration jumps within <100 micros. Recordings of transport currents generated by GAT1, both in forward and exchange transport modes, showed multiple charge movements that can be separated along the time axis. The individual reactions associated with these charge movements differ from the well-characterized electrogenic "sodium-occlusion" reaction by GAT1. One of the observed electrogenic reactions is shown to be associated with the GABA-translocating half-cycle of the transporter, in contradiction to previous studies that showed no charge movements associated with these reactions. Interestingly, reactions of the GABA-bound transporter were not affected by the absence of extracellular chloride, suggesting that Cl- may not be co-translocated with GABA. Based on the results, a new alternating access sequential-binding model is proposed for GAT1's transport cycle that describes the results presented here and those by others.  相似文献   

17.
In 100 and 200 mumol/l concentration, pyritinol inhibited GABA binding to the GABA receptors of brain synaptosomal membranes. GABA receptors from the cerebral cortex, diencephalon and striatum were inhibited to approximately the same degree; those from the cerebellum and spinal cord were inhibited more. Both high and low affinity receptors were inhibited. Pyritinol did not greatly affect the number of binding sites (Bmax), but reduced the affinity (raised the dissociation constant KD) of both receptors. The benzodiazepine receptor, which is connected with the postsynaptic GABAA receptor, was also inhibited by pyritinol. The character of inhibition was the same as for GABA receptors, i.e. there was no change in the number of binding sites, but there was a decrease in their affinity. It is assumed that the similarity of the effect on GABA and benzodiazepine receptors is associated with their occurrence on one, or on two relatively firmly interconnected, protein molecules. Depression of the affinities of GABA and the associated benzodiazepine receptor, together with inhibition of GABA synthesis, in the presence of pyritinol indicate that diminished activity of the GABA system in the brain might be related to the activating effect of pyritinol.  相似文献   

18.

Objectives

To direct the carbon flux from Krebs cycle into the gamma-aminobutyric acid (GABA) shunt pathway for the production of GABA by protein scaffold introduction in Escherichia coli.

Results

Escherichia coli was engineered to produce GABA from glucose by the co-localization of enzymes succinate semialdehyde dehydrogenase (GadD), GABA aminotransferase (PuuE) and GABA transporter (GadC) by protein scaffold. 0.7 g GABA l?1 was produced from 10 g glucose l?1 while no GABA was produced in wild type E. coli. pH 6 and 30 °C were optimum for GABA production, and GABA concentration increased to 1.12 g GABA l?1 when 20 g glucose l?1 was used. When competing metabolic networks were inactivated, GABA increased by 24 % (0.87 g GABA l?1).

Conclusions

The novel GABA production system was constructed by co-localization of GABA shunt enzymes.
  相似文献   

19.
The interactions of taurine and its precursor hypotaurine with the GABA-benzodiazepine receptor complex were studied by investigating their effects on GABA and flunitrazepam binding in rat brain membranes. Taurine, and to a lesser degree also hypotaurine, displaced the high- and low-affinity GABA binding. The maximal binding capacities of both sites were decreased in the presence of taurine, while the binding constants remained the same, suggesting noncompetitive interactions. Taurine and hypotaurine affected flunitrazepam binding only at a very high concentration (50 mmol/l), whereas GABA (within the concentration range of 0.1–100 mol/l) significantly enhanced the binding. Taurine inhibited the GABA-stimulated binding dose-dependently. These modulatory effects of taurine on the GABA-benzodiazepine receptor complex could result from interactions with the GABA recognition site but not from direct actions on the benzodiazepine site.  相似文献   

20.
m-Sulfonate benzene diazonium chloride (MSBD) was used to affinity-label the gamma-aminobutyric acid (GABA) binding site from rat brain membranes. To assess the irreversibility of the labeling reaction, we used an efficient ligand dissociation procedure combined to a rapid [3H]muscimol binding assay, both steps being performed on filter-adsorbed membranes. Inactivation of specific [3H]-muscimol binding sites by MSBD and its prevention by GABA were both time- and concentration-dependent. The time course of MSBD labeling was shortened as the pH of the incubation medium was increased from 6.2 to 8. These data suggest that MSBD can efficiently label the GABA binding site through alkylation of a residue having an apparent dissociation constant around neutrality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号