首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant protein production in Escherichia coli can be significantly reduced by acetate accumulation. It is demonstrated that acetate production can be detected on-line with a standard dissolved oxygen sensor by superimposing short pulses to the substrate feed rate. Assuming that acetate formation is linked to a respiratory limitation, a model for dissolved oxygen responses to transients in substrate feed rate is derived. The model predicts a clear change in the character of the transient response when acetate formation starts. The predicted effect was verified in fed-batch cultivations of E. coli TOPP1 and E. coli BL21(DE3), both before and after induction of recombinant protein production. It was also observed that the critical specific glucose uptake rate, at which acetate formation starts, was significantly decreased after induction. On-line detection of acetate formation with a standard sensor opens up new possibilities for feedback control of substrate feeding.  相似文献   

2.
Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. The ribosomal machinery, located in the cytoplasm is an outstanding catalyst of recombinant protein biosynthesis. Escherichia coli facilitates protein expression by its relative simplicity, its inexpensive and fast high-density cultivation, the well-known genetics and the large number of compatible tools available for biotechnology. Especially the variety of available plasmids, recombinant fusion partners and mutant strains have advanced the possibilities with E. coli. Although often simple for soluble proteins, major obstacles are encountered in the expression of many heterologous proteins and proteins lacking relevant interaction partners in the E. coli cytoplasm. Here we review the current most important strategies for recombinant expression in E. coli. Issues addressed include expression systems in general, selection of host strain, mRNA stability, codon bias, inclusion body formation and prevention, fusion protein technology and site-specific proteolysis, compartment directed secretion and finally co-overexpression technology. The macromolecular background for a variety of obstacles and genetic state-of-the-art solutions are presented.  相似文献   

3.
The 29-kDa FK506 binding protein (FKBP) gene is the only peptidyl-prolyl cis-trans isomerase (PPIase) gene in the genome of Pyrococcus horikoshii. We characterized the function of this FKBP (PhFKBP29) and used it to increase the production yield of soluble recombinant protein in Escherichia coli. The PPIase activity (k(cat)/K(m)) of PhFKBP29 was found to be much lower than that of other archaeal 16- to 18-kDa FKBPs by a chymotrypsin-coupled assay of the oligo-peptidyl substrate at 15 degrees C. Besides this low PPIase activity, PhFKBP29 showed chaperone-like protein folding activity which enhanced the refolding yield of chemically unfolded rhodanese in vitro. In addition, it suppressed thermal protein aggregation in a temperature range of 45 to 100 degrees C. When the PhFKBP29 gene was coexpressed with the recombinant Fab fragment gene of the anti-hen egg lysozyme antibody in the cytoplasm of E. coli, whose expressed product tended to form an inactive aggregate in E. coli, it improved the yield of the soluble Fab fragments with antibody specificity. PhFKBP29 exerted protein folding and aggregation suppression in E. coli cells.  相似文献   

4.
大肠杆菌是表达重组蛋白最常用的宿主之一。利用大肠杆菌分泌途径胞外表达重组蛋白具有可促进蛋白正确折叠,有效减少包涵体形成,简化纯化工序等诸多优势,近年来备受关注。其中,大肠杆菌I型分泌途径具有分泌表达速度快,蛋白活性高,对宿主代谢无影响等特点,是目前应用最广泛的分泌途径之一。综述了大肠杆菌I型分泌系统的元件组成和分泌机理及提高I型分泌系统蛋白表达量的有效策略,为重组蛋白生产应用提供了理论依据。  相似文献   

5.
A gene (Ecs) encoding a platelet aggregation inhibitor, echistatin (Ecs), has been chemically synthesized. Met at position 28 of the native protein was replaced by Leu in the recombinant Ecs. To express this synthetic gene in Escherichia coli, an expression vector, pJC264, was constructed by inserting portions of the E. coli cheB and cheY gene complex into the plasmid pUC13. High-level expression of the synthetic [Leu-28]Ecs was achieved by its fusion with the E. coli cheY gene in the expression vector. Recombinant [Leu-28]Ecs was liberated from the fusion protein by CNBr cleavage at the Met inserted between the CheY protein and [Leu-28]Ecs. The recombinant [Leu-28]Ecs was purified to homogeneity by reverse-phase high-performance liquid chromatography. The refolded [Leu-28]Ecs was identical to native Ecs in inhibiting platelet aggregation, suggesting that Met at position 28 is not essential for the biological activity of this platelet aggregation inhibitor.  相似文献   

6.
Ribosome-inactivating proteins (RIPs) are toxic proteins synthesized by many plants and some bacteria, that specifically depurinate the 28S RNA and thus interrupt protein translation. RIPs hold broad interest because of their potential use as plant defense factors against pathogens. However, study of the activity of type I RIPs has been hampered since their expression in Escherichia coli has typically been toxic to the model system. Mirabilis expansa, an Andean root crop, produces a type I RIP called ME1 in large quantities in its storage roots. In this study, the cDNA sequence of ME1 was used to successfully express the recombinant ME1 protein in E. coli. The production of recombinant ME1 in E. coli was confirmed by Western blot analysis using anti-ME1 antibodies. The studies with fluorescence-labeled ME1 showed that ME1 can enter bacteria and be distributed in the cytoplasm uniformly, indicating its ability to access the protein synthesis machinery of the bacteria. The recombinant enzyme was active and depurinated yeast ribosomes. However, both native and recombinant ME1 proteins failed to depurinate the E. coli ribosomes, explaining the non-toxicity of recombinant ME1 to E. coli. Structural modeling of ME1 showed that it has folding patterns similar to other RIPs, indicating that ME1 and PAP, which share a similar folding pattern, can show different substrate specificity towards E. coli ribosomes. The results presented here are very significant, as few reports are available in the area of bacterial interaction with type I RIPs.  相似文献   

7.
E. coli is one of the most commonly used host strains for recombinant protein production. However, recombinant proteins are usually found intracellularly, in either cytoplasm or periplasmic space. Inadequate secretion to the extracellular environment is one of its limitations. This study addresses the outer membrane barrier for the translocation of recombinant protein directed to the periplasmic space. Specifically, using recombinant maltose binding protein (MalE), xylanase, and cellulase as model proteins, we investigated whether the lpp deletion could render the outer membrane permeable enough to allow extracellular protein production. In each case, significantly higher excretion of recombinant protein was observed with the lpp deletion mutant. Up to 90% of the recombinant xylanase activity and 70% of recombinant cellulase activity were found in the culture medium with the deletion mutant, whereas only 40-50% of the xylanase and cellulase activities were extracellular for the control strain. Despite the weakened outer membrane in the mutant strain, cell lysis did not occur, and increased excretion of periplasmic protein was not due to cell lysis. The lpp deletion is a simple method to generate an E. coli strain to effect significant extracellular protein production. The phenotype of extracellular protein production without cell lysis is useful in many biotechnological applications, such as bioremediation and plant biomass conversion.  相似文献   

8.
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wild-type form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.  相似文献   

9.
节杆菌BT801 N-氨甲酰氨基酸水解酶基因的克隆与表达   总被引:1,自引:0,他引:1  
通过PCR从质粒pUC18 16 9中扩增得到N 氨甲酰氨基酸水解酶基因 (hyuC) ,置于原核表达载体pQE6 0的T5启动子下游构成表达质粒pQE6 0 hyuC ,并在大肠杆菌M15中实现了该基因的高表达。SDS PAGE检测表达产物 ,在相对分子量 44kD处有一表达带 ,经薄层扫描分析目的蛋白占全菌蛋白的 40 % ,主要以可溶性形式存在。酶活性分析结果表明 ,工程菌M15 pQE6 0 hyuC的N 氨甲酰氨基酸水解酶的比活分别比原始菌株ArthrobacterBT80 1和亚克隆DH5α pUC18 16 9提高了 5 2倍和 72倍。在节杆菌BT80 1和大肠杆菌DH5α pUC18 16 9的反应体系中加入等量菌体的工程菌M15 pQE6 0 hyuC ,可使乙内酰脲酶总比活分别提高 8 1倍和 3 0倍。  相似文献   

10.
A fed-batch process for the high cell density cultivation of E. coli TG1 and the production of the recombinant protein phenylalanine dehydrogenase (PheDH) was developed. A model based on Monod kinetics with overflow metabolism and incorporating acetate utilization kinetics was used to generate simulations that describe cell growth, acetate production and reconsumption, and glucose consumption during fed-batch cultivation. Using these simulations a predetermined feeding profile was elaborated that would maintain carbon-limited growth at a growth rate below the critical growth rate for acetate formation (mu < mu(crit)). Two starvation periods are incorporated into the feed profile in order to induce acetate utilization. Cell concentrations of 53 g dry cell weight (DCW)/L were obtained with a final intracellular product concentration of recombinant protein corresponding to approximately 38% of the total cell protein. The yield of PheDH was 129 U/mL with a specific activity of 1.2 U/mg DCW and a maximum product formation rate of 0.41 U/mg DCW x h. The concentration of aectate was maintained below growth inhibitory levels until 3 h before the end of the fermentation when the concentration reached a maximum of 10.7 g/L due to IPTG induction of the recombinant protein.  相似文献   

11.
As Escherichia coli (E. coli) is well defined with respect to its genome and metabolism, it is a favored host organism for recombinant protein production. However, many processes for recombinant protein production run under suboptimal conditions caused by wrong or incomplete information from an improper screening procedure, because appropriate on-line monitoring systems are still lacking. In this study, the oxygen transfer rate (OTR), determined on-line in shake flasks by applying a respiration activity monitoring system (RAMOS) device, was used to characterize the metabolic state of the recombinant organisms. Sixteen clones of E. coli SCS1 with foreign gene sequences, encoding for different target proteins, were cultivated in an autoinduction medium, containing glucose, lactose, and glycerol, to identify relationships between respiration activity and target protein production. All 16 clones showed a remarkably different respiration activity, biomass, and protein formation under induced conditions. However, the clones could be classified into three distinct types, and correlations could be made between OTR patterns and target protein production. For two of the three types, a decrease of the target protein was observed, after the optimal harvest time had passed. The acquired knowledge was used to modify the autoinduction medium to increase the product yield. Additional 1.5 g/L glucose accelerated the production process for one clone, shifting the time point of the maximal product yield from 24 to 17 h. For another clone, lactose addition led to higher volumetric product yields, in fact 25 and 38% more recombinant protein for 2 and 6 g/L additional lactose, respectively.  相似文献   

12.
Changes in protein synthesis due to an inflammatory challenge   总被引:4,自引:0,他引:4  
Rates of protein synthesis in various chick tissues were examined 16 hr after an inflammatory challenge. Protein synthetic rates were calculated from the rate at which [14C]leucine was incorporated into protein and the specific activity of [14C]leucine in the precursor pool. An injection of either Escherichia coli or sheep red blood cells (SRBC) decreased the rate of protein synthesis in the gastrocnemius muscle, and increased the rate in liver, bursa, spleen, and thymus. E. coli, but not SRBC, decreased protein synthesis in the pectoralis muscle. E. coli significantly decreased the aggregation of pectoralis muscle polysomes and increased the aggregation of polysomes in the thymus, bursa, and spleen. E. coli increased the aggregation of free, but not bound, polysomes in liver, suggesting an increase in synthesis of export proteins. SRBC significantly increased polysomal aggregation in bursa and spleen only. A crude preparation of leukocyte endogenous mediator, isolated from peritoneal macrophages, decreased muscle-polysomal aggregation. These studies indicate that tissue-specific changes in protein synthesis occur after a noninfectious inflammatory challenge. These changes may be part of a homeostatic mechanism which supports the immune response.  相似文献   

13.
Recombinant cell growth and protein synthesis by a recombinant Escherichia coli under various inducing conditions are compared to the predictions of a mathematical model. The mathematical model used was a combination of two literature models: (1) an empirical kinetic model for recombinant growth and product formation and (2) a genetically structured model of the lac promoter-operator on a multicopy plasmid. The experimental system utilized was recombinant E. coli CSH22 bearing the temperature-sensitive plasmid pVH106/172, which codes for the synthesis of beta-galactosidase and the other lac operon genes under the control of a lac promoter. Mathematical model predictions for recombinant beta-galactosidase yield and specific growth rate were compared with fermentation measurements of these same quantities for conditions of chemical induction with cyclic AMP and IPTG, copy number amplification (by shifting culture temperature), and combined chemical induction and copy number amplification. The model successfully predicted experimental product yields for most cases of chemical induction even though the product yields varied from 0.34 x 10(3) to 1500 x 10(3) units/g cell mass. The kinetic model also correctly predicted a decline in the specific growth rate with increasing levels of plasmid and recombinant protein. The model was less successful at predicting product amplification at high copy numbers. A comparison of model predictions and experimental results was also used to investigate some of the assumptions used in constructing the mathematical models.  相似文献   

14.
To examine the effects of overexpression of trigger factor (TF) on recombinant proteins produced in Escherichia coli, we constructed plasmids that permitted controlled expression of TF alone or together with the GroEL-GroES chaperones. The following three proteins that are prone to aggregation were tested as targets: mouse endostatin, human oxygen-regulated protein ORP150, and human lysozyme. The results revealed that TF overexpression had marked effects on the production of these proteins in soluble forms, presumably through facilitating correct folding. Whereas overexpression of TF alone was sufficient to prevent aggregation of endostatin, overexpression of TF together with GroEL-GroES was more effective for ORP150 and lysozyme, suggesting that TF and GroEL-GroES play synergistic roles in vivo. Although coexpression of the DnaK-DnaJ-GrpE chaperones was also effective for endostatin and ORP150, coexpression of TF and GroEL-GroES was more effective for lysozyme. These results attest to the usefulness of the present expression plasmids for improving protein production in E. coli.  相似文献   

15.
The strategy described in this paper provides a novel approach for recombinant expression of heterodimeric proteins, and is especially suitable for the production of proteins whose characteristics lead to aggregation in E. coli expression systems. Pheromaxein, a steroid-binding protein isolated from boar saliva, is a heterodimeric protein consisting of 10x10(3) rel. mol. mass units (pheromaxein A) and 8x10(3) rel. mol. mass units (pheromaxein C) subunits. Expression of pheromaxein subunits in E. coli resulted in extensive insoluble aggregation. The difficulty faced in obtaining soluble recombinant pheromaxein subunits was clearly evident when native pheromaxein immediately formed aggregates when it was separated into its individual subunits. An increase in soluble pheromaxein expression in E. coli was obtained when the subunits were expressed as fusion proteins with thioredoxin. Pheromaxein genes were inserted separately into pET32a+ vectors at the NcoI site, resulting in thioredoxin, S.Tag and His.Tag coding regions being upstream of the inserted gene. Soluble pheromaxein A-thioredoxin (pheroA/trx) and pheromaxein C-thioredoxin (pheroC/trx) fusions were purified to homogeneity, using a laboratory scale S-protein agarose affinity column. Cleavage of thioredoxin under normal conditions was not feasible due to the extensive aggregation problems experienced when pheromaxein subunits exist separately. PheroA/trx and pheroC/trx were therefore mixed together and cleaved from thioredoxin simultaneously so that pheromaxein subunits were given an instant opportunity to associate under oxido-shuffling conditions. The glutathione oxido-shuffling system allowed the disulphide bridges between pheromaxein A and C to rearrange until the correct native structure was formed. This novel approach combines affinity purification with a coupled fusion protein-cleavage and refolding technique.  相似文献   

16.
Bovine beta-lactoglobulin (BLG) has been widely used as a model system to study protein folding and aggregation and for biotechnology applications. Native BLG contains two disulfide bonds and one free cysteine at position 121. This free thiol group has been shown to be responsible for the irreversibility of BLG denaturation in vitro, but nothing is known about its relevance during protein folding inside the cell. Here, we report the expression of soluble wild type recombinant BGL in Escherichia coli cells at about 109 mg rBLG/g wet weight cells and a comparison between the aggregation of wt BLG and its variant C121S upon intracellular expression. We show that in E. coli C121SBLG is more prone to aggregation than the wild type protein and that their different behavior depends on the oxidation of disulfide bonds. Our results underline the key contribution of the unpaired cysteine residue during the oxidative folding pathway and indicate BLG as a useful tool for the study of protein aggregation in vivo.  相似文献   

17.
Escherichia coli is a common host for recombinant protein production for biotechnology applications. Secretion to the extracellular media has the potential to reduce protein aggregation and to simplify downstream purification. However, the complexity of the mechanisms of protein secretion has confounded prior attempts to engineer enhanced secretion phenotypes. Here, mutagenesis was used to perturb E. coli W3110 cells secreting HlyA via a Type I pathway. An activity assay identified a mutant secreting fourfold more active alpha-hemolysin than the parent strain. The mutant was characterized using both high-density microarrays for mRNA profiling and a proteomics strategy for protein expression. The relative mRNA and protein expression levels of tRNA-synthetases were decreased in the mutant compared to the parent. A mathematical model of prokaryotic translation was used to design a variant of the hlyA gene that encodes the same amino acid sequence but uses rare codons to slow the rate of translation by altering five bases. Analysis of the parent strain transformed with a plasmid containing this variant gene resulted in the recovery of, and further improvement upon, the selected hypersecretion phenotype. These results present one of the first successful metabolic engineering attempts based on molecular information provided by mRNA and protein expression profiling approaches and resulting in a phenotype useful to the biotechnology community.  相似文献   

18.
For effective FMD control programme, India needs large quantities of cheaper diagnostics in addition to vaccine. Diagnostic reagents produced through conventional methods may not be able to meet such requirements. Alternatively, rDNA technology using suitable heterologous systems that permit production of recombinant antigens to the most native form may be exploited. Studies conducted in our laboratory have led us to select carboxy terminal part of VP1 for expression and evaluation. The protein, which was purified from E.coli under denaturing conditions, was renatured and its reactivity was compared with the protein expressed in insect cells through recombinant baculovirus. The expressed protein in the insect cell whole lysate reacted more efficiently with antibodies raised against whole virus than the purified and renatured protein produced in E.coli. But for its lower reactivity, protein produced from E.coli was found to be suitable in type detection. In addition, the size of the protein is small (16 kD) and production and purification of it from E.coli may be cost effective. Hence, it may be exploited for FMDV typing.  相似文献   

19.
Over last two decades many researchers have demonstrated the mechanisms of how the Escherichia coli chaperonin GroEL and GroES work in the binding and folding of different aggregation prone substrate proteins both in vivo and in vitro. However, preliminary aspects, such as influence of co-expressing GroEL and GroES on the over expression of other recombinant proteins in E. coli cells and subsequent growth aspects, as well as the conditions for optimum production of recombinant proteins in presence of recombinant chaperones have not been properly investigated. In the present study we have demonstrated the temperature dependent growth characteristics of E. coli cells, which are over expressing recombinant aconitase and how the co-expression of E. coli chaperonin GroEL and GroES influence the growth rate of the cells and in vivo folding of recombinant aconitase. Presence of co-expressed GroEL reduces the aconitase over-expression drastically; however, exogenous GroEL & GroES together compensate this reduction. For the aconitase over-expressing cells the growth rate decreases by 30% at 25 degrees C when compared with the M15 E. coli cells, however, there is an increase of 20% at 37 degrees C indicating the participation of endogenous chaperonin in the folding of a fraction of over expressed aconitase. However, in presence of co-expressed GroEL and GroES the growth rate of aconitase producing cells was enhanced by 30% at 37 degrees C confirming the assistance of exogenous chaperone system for the folding of recombinant aconitase. Optimum in vivo folding of aconitase requires co-production of complete E. coli chaperonin machinery GroEL and GroES together.  相似文献   

20.
An alternative approach to the use of antibiotic selection markers for maintenance of recombinant plasmid vectors in Escherichia coli based on an aminoacid auxotrophy complementation has been developed. An E. coli M15-derivated glycine-auxotrophic strain of has been constructed by means of a PCR-based approach. This mutant strain contains a deletion in the glyA gene, which encodes for serine hydroxymethyl transferase, an enzyme involved in the main glycine biosynthesis pathway in E. coli. Also, we have constructed the complementation plasmid pQEalphabetarham derived from the commercially available expression vector pQE40 (QIAGEN) containing the glyA homologous gene under the control of the constitutive weak promoter P3. By using the E. coli M15DeltaglyA strain combined with the pQEalphabetarham plasmid, a successful complementation system was achieved, allowing transformants to grow on minimal media without glycine supplementation. The capability of the new system E. coli M15DeltaglyA/pQEalphabetarham for recombinant overproduction of rhamnulose 1-phosphate aldolase was evaluated in antibiotic free fed-batch cultures at controlled specific growth rate, obtaining high cell density cultures and high RhuA production and productivity levels comparable to those obtained with the conventional system. The new selection marker based on glycine-auxotrophy is a promising genetic tool, not only for recombinant protein production, but also for plasmid DNA production processes, where antibiotics can not be present in the medium formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号