首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
水葫芦[Eichhornia crassipes(Mart)Solms]是世界上繁殖最快、危害最严重的多年生水生杂草之一。为了避免化学除草剂对水体的污染,生物防治已成为当前水葫芦治理的重要方向。马缨丹(Lantana camara)是马鞭草科的一种植物,其叶片提取物对水葫芦有很强的毒性。研究结果表明:经马缨丹叶提取液处理的水葫芦叶片中,超氧物歧化酶(SOD)活性与H2O2浓度均显著升高,但过氧化氢酶的活性受到抑制,膜脂过氧化程度明显增加。H2O2的组织化学染色结果表明H2O2在气孔细胞中有异常高的积累,H2O2过量产生同时导致水葫芦叶片失绿与细胞死亡。因此,氧胁迫可能是马缨丹提取液对水葫芦毒害的主要原因之一。  相似文献   

2.
以荒漠C4草本植物蔷薇猪毛菜(NADP苹果酸酶型,NADP-ME)和粗枝猪毛菜(NAD苹果酸酶型,NAD-ME)为研究对象,采用盆栽控水试验设置正常供水和轻度、中度、重度干旱处理(土壤含水量分别为田间持水量80%、60%、45%和35%),通过测定不同程度干旱胁迫下叶片含水量、C4光合特征酶和抗氧化酶活性等指标,探讨不同类型C4荒漠植物光合特征酶和抗氧化系统对干旱逆境的适应机制。结果显示:(1)2种植物叶片含水量均随干旱胁迫的加剧不同程度降低。(2)叶片磷酸烯醇式丙酮酸羧化酶(PEPC)活性在中度干旱胁迫下显著增加而在重度干旱胁迫下急剧下降;蔷薇猪毛菜NAD-ME活性和粗枝猪毛菜NADP-ME活性都很低,且它们基本不受干旱胁迫的影响;随干旱胁迫的加剧,蔷薇猪毛菜NADP-ME活性呈下降趋势,而粗枝猪毛菜NAD-ME活性先显著增加而在重度干旱胁迫下显著降低。(3)随着干旱胁迫的加剧,叶片超氧化物歧化酶(SOD)活性呈下降趋势,过氧化物酶(POD)活性在不同程度干旱胁迫下均有不同程度增加;过氧化氢酶(CAT)活性在中度干旱胁迫下均有不同程度的增加,但在重度干旱胁迫下蔷薇猪毛菜CAT活性降低,而粗枝猪毛菜CAT活性显著增加;丙二醛(MDA)含量随干旱胁迫的加剧均有不同程度的增加。研究认为,一定程度干旱胁迫下,2种荒漠植物的PEPC活性均有增加;不同光合类型C4植物叶片脱羧酶(NADP-ME和NAD-ME)对干旱胁迫的响应有明显的差异。POD和CAT是这两种C4植物适应干旱胁迫的主要抗氧化酶,但蔷薇猪毛菜CAT在重度干旱胁迫下没有起到积极保护作用。  相似文献   

3.
以水曲柳基因组DNA为模板,用Site Finding-PCR法扩增得到节律基因LHY(late elongated hypocotyl)启动子序列,长度为1 360 bp。PLACE启动子预测工具分析表明,序列中含有转录必备的TATA box、CAAT box以及一些非生物胁迫和激素响应元件等。构建植物GFP瞬时表达载体p PXGFP-P-LHY,农杆菌介导转化烟草叶片和白桦悬浮细胞,GFP检测结果表明,LHY启动子能够启动GFP基因在烟草和白桦细胞中表达,且对非生物胁迫(低温、高温、盐)产生响应;构建植物GUS报告基因整合表达载体p PCXGUS-P-LHY,农杆菌介导法瞬时转化烟草,GUS染色结果表明,LHY启动子的活性具有不同程度的时空特性。  相似文献   

4.
干旱胁迫是影响植物生长发育的主要限制因素之一。到目前为止,许多研究都仅关注于植物对干旱反应的信号转导网络,而对其中一些很重要的中间成分却知之甚少。保卫细胞定位于植物叶片的表皮中,控制二氧化碳的吸收以及水分的散失,已经成为一种高度特化的细胞体系,可用来研究植物早期干旱信号转导机制。控制气孔的开度在提高植物的抗旱性方面具有重要意义。通过使用远红外热成像仪检测植物叶片表面温度的微小差异,我们成功地筛选并获得了拟南芥(Arabidopsis thaliana)干旱敏感突变体doi1。在干旱胁迫条件下,该突变体表现为叶面温度低于野生型,且失水率比野生型高。利用TAIL-PCR技术成功克隆到该突变体基因NCED3,并利用RT-PCR方法验证了TAIL-PCR结果的可靠性。  相似文献   

5.
植物细胞程序性死亡(programmed cell death,PCD)是一种由细胞内部程序控制的、主动的细胞死亡过程。在植物发育、逆境胁迫及超敏反应中,PCD都起着重要的作用。为检测植物PCD过程中类似动物细胞凋亡蛋白酶caspase-3的活性,构建了一个能够在活体植物细胞中实时检测类caspase-3蛋白酶激活的质粒PI—ECFP—EYFP。该质粒在植物细胞中可以表达出两端为青色荧光蛋白(ECFP)和黄色荧光蛋白(EYFP)的融合蛋白。这两个荧光蛋白通过含有caspase-3蛋白酶作用靶点DEVD的短肽相连,从而可以根据荧光共振能量转移现象检测类caspase-3凋亡蛋白酶的激活,以为实时检测植物PCD过程中关键蛋白酶的激活及其调控奠定基础。  相似文献   

6.
盐胁迫下盐桦生理响应的变化分析   总被引:3,自引:0,他引:3  
对组织培养获得的盐桦(Belula halophila)苗在盐胁迫下的生理指标和解剖结构进行了分析,结果显示,随着盐浓度的增加,植物叶片相对含水量逐渐降低;脯氨酸(Pro)含量逐渐增加;叶片丙二醛(MDA)含量和过氧化氢酶(CAT)活性大小存在相关性,在50~200mmol/L盐胁迫下,植物的CAT活性是递增的,200mmol/LNaCl处理时达到最高,同时叶片MDA含量在50~200mmol/L盐处理时变化不明显;CAT活性在300mmol/LNaCl处理时突然降低,此时叶片MDA含量大;植物叶片和根的离子含量测定表明,在盐胁迫下K^+/Na^+比值逐渐降低,叶片中K^+含量始终高于Na^+含量;石蜡切片和扫描电镜发现盐桦茎、叶中有晶体状物质存在,通过X-ray分析表明这种晶体含有C,O,Ca元素,相关的细胞成分化学实验进一步确定其结晶体的成分。  相似文献   

7.
Cd胁迫对黄菖蒲幼苗4种抗氧化酶活性的影响   总被引:7,自引:3,他引:4  
采用水培法对Cd胁迫下黄菖蒲(Iris pseudacorus L.)幼苗叶片和根系中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)及抗坏血酸过氧化物酶(APX)的活性进行了研究。结果表明,10、40和120mg·L^-1Cd胁迫下,黄菖蒲幼苗叶片和根系中4种酶活性的变化不同。10和40mg·L^-1 cd胁迫下,黄菖蒲幼苗叶片和根系中的POD及APX活性、叶片中的SOD活性及根系中的CAT均明显高于对照;在120mg·L^-1 Cd胁迫下,叶片中的POD活性及根系中的POD和CAT活性均高于对照;各处理组根系中的SOD活性均低于对照。随处理时间的延长,40和120mg·L^-1Cd胁迫处理组叶片的CAT活性和120mg·L^-1Cd胁迫处理组根系的APX活性逐渐降低,其他处理组不同酶的活性逐渐升高或先升后降。黄菖蒲叶片及根系中的4种酶对Cd胁迫的响应能力有差异,其中POD可能是黄菖蒲耐Cd胁迫的主要抗性诱导酶。  相似文献   

8.
测定了生长在Al2(SO4)100μmol/L氮素营养液中的两个玉米品种(SC704和VA35的根系和叶片)的NADH-硝酸还原酶(EC1.6.6.)和NAD(P)H-硝酸还原酶(EC1.6.6.2)活性。结果表明铝的存在阻碍了玉米根系和叶片的生长、降低了营养液的pH值,降低了叶片的NADH-及NAD(P)H-硝酸还原酶活性(酶活性降低的程度SC704低于VA35),增加了根系的NADH-和NAD(P)H-硝酸还原酶活性(VA35根系的比活性除外)。铝胁迫下根系的NADH-和NAD(P)H-硝酸还原酶活性的增加SC704大于VA35。耐铝品种SC704的高NR活性以及在铝胁迫下能维持更高的NR活性的特点说明硝酸还原酶与植物组织的Al解毒机制有关。同时,在铝胁迫下的硝酸盐代谢中NAD(P)H-硝酸还原酶具有更重要的作用。  相似文献   

9.
为探明常绿杜鹃亚属植物高温致伤的生理机制,以猴头杜鹃(Rhododendron simiarum Hance)、井冈山杜鹃(R.jinggangshanicumTam)四年生实生苗为材料,通过人工气候箱中的盆栽实验,研究了不同程度的高温胁迫对两种常绿亚属杜鹃幼苗叶片生理生化特性的影响。结果表明:(1)两种杜鹃叶片的丙二醛(MDA)、过氧化氢(H2O2)及脯氨酸(Pro)、可溶性蛋白质含量均随胁迫温度的升高而增大;猴头杜鹃的H2O2、可溶性蛋白含量及增幅均明显小于井冈山杜鹃,而MDA、Pro的增幅则因胁迫温度而异。(2)两种杜鹃叶片抗坏血酸(AsA)含量均随胁迫温度的升高而降低,但猴头杜鹃的降幅小于井冈山杜鹃。(3)高温胁迫下,猴头杜鹃除过氧化氢酶(CAT)活性增幅略小外,超氧化物歧化酶(SOD)、过氧化物酶(POD)及抗坏血酸过氧化物酶(APX)增幅均大于井冈山杜鹃。可见,随着胁迫温度的升高两种杜鹃叶片膜脂过氧化作用加重,而猴头杜鹃较井冈山杜鹃具有更强的酶促和非酶促清除活性氧能力。  相似文献   

10.
以松杉灵芝Ganoderma tsugae子实体为材料,测定其提取物的增强记忆活性能力。利用避暗实验、测定胆碱乙酰转移酶(ChAT)、乙酰胆碱酯酶(AchE)和乙酰胆碱(ACh)的含量及制备脑组织细胞HE染色切片的方法,对松杉灵芝的石油醚提取液、氯仿提取液、甲醇提取液、水提取液及从石油醚提取液中分离得到的化合物1-羟基-3-甲基-9,10-蒽醌的增强记忆活性能力进行研究。结果表明,与模型组比较,甲醇高剂量组、氯仿高剂量组、水层高剂量组、脑复康组和1-羟基-3-甲基-9,10-蒽醌高剂量组的潜伏期明显延长。氯仿高剂量组、水层高剂量组和1-羟基-3-甲基-9,10-蒽醌高剂量组不仅能够降低AchE的活性,而且能够增强ChAT和Ach的活性,其中1-羟基-3-甲基-9,10-蒽醌3个指标的活性效果最好。经水层、甲醇层处理的HE染色切片中,小鼠脑神经细胞数量较多,接近青年组空白组,神经细胞球状,染色效果明显;老年组和老年对照组小鼠神经细胞近锥形,神经细胞的数量较少。小鼠记忆实验综合结果说明,1-羟基-3-甲基-9,10-蒽醌和水层均具有提高小鼠学习记忆活性的作用。  相似文献   

11.
This study aimed to determine if two species of sunflower, Helianthus annus L. cv. Hysun 31 (cultivated, single-stemmed genotype) and Helianthus petiolaris Nuttall ssp. fallax (wild, many-hranched genotype) differed in the response of leaf growth to water deficits. Earlier published studies, concerned only with H. annuus, failed to reveal differences in the response of sunflowers to water stress. Plants of the two species were paired in large containers of soil and grown under high radiation in a glasshouse. One batch of plants was irrigated and the other allowed to dry so that predawn leaf water potentials declined at an average of 0.072 MPa day?1. The dry batch was rewatered when predawn leaf water potentials reached ?0.85 MPa. The stress imposed was sufficient to curtail leaf growth so that plants in the dry treatment had only 60% of the leaf area of irrigated plants at the onset of rewatering. Both species were affected by stress to the same relative extent, though their leaf areas at this stage differed 7-fold. Both genotypes also recovered to the same degree in the long term, finally having leaf areas and gross dry matter distribution patterns which were indistinguishable from plants which were irrigated throughout. However, water stress resulted in different distribution patterns of leaf area: H. annuus produced larger leaves at the top of its single stem which compensated for the reduced area in lower leaves, whereas H. petiolaris compensated in the leaves on its branches. Leaves which emerged after the time of stress were most able to compensate in area subsequently. For example, those leaves of H. annuus which emerged one week after stress-relief were more than three times larger than comparable leaves on plants irrigated continuously. Leaf expansion rates were affected earlier in the stress cycle than leaf conductance in H. annuus, but not in H. petiolaris. But as with other plant responses to water stress, the differences between the two species were small.  相似文献   

12.
The seasonal dynamics of non-structural carbohydrates in the woody organs of two co-existing mediterranean sub-shrubs were analyzed. The two species show different leaf phenology during summer: Linum suffruticosum, maintains many of its green leaves, while Lepidium subulatum sheds most of its leaves. These different leaf phenologies are related to different strategies with regard to summer stress. The maintenance of leaves in Linum is related to its stress tolerance while Lepidium avoids stress by shedding its leaves. The main objectives were to: (1) determine the differences in the seasonal dynamics of non-structural carbohydrates among the main woody organs of both species; (2) verify if differences in the leaf phenology, and hence in the strategy with regard to summer drought, lead to different seasonal patterns of carbohydrate storage and use between the two species; (3) compare the seasonal dynamics of carbohydrates of the two studied sub-shrubs with those of mediterranean trees and shrubs previously reported in the literature. The concentration of soluble sugars (SS), starch and total non-structural carbohydrates (TNC) were assessed monthly, over 17 months, in the main roots, stems and the transition zone between root and shoot systems of both species. Starch storage capacity and SS, starch and TNC pools were calculated. The seasonal pattern of carbohydrate accumulation was similar among the woody organs analyzed, but it differed with those reported for mediterranean trees and shrubs. The two species showed different pools and seasonal patterns of non-structural carbohydrate concentrations in its woody organ, which corresponded to their different extent of leaf shedding. The stress-avoider Lepidium accumulated starch during spring shoot growth as a carbon store for summer respiration and had low pools of SS, whereas the stress-tolerant Linum increased SS during summer drought to maintain photosynthetic activity during summer and had low starch pools and storage capacity. However, irrespective of their different leaf shedding patterns, both species had a similar relative variation of their TNC concentration, which contrasts with previous results on deciduous and evergreen woody species.  相似文献   

13.
The physiological basis underlying differences in sensitivity of different aged leaves to water stress was investigated in Fragaria virginiana Duchesne. Differential susceptibility of only older leaves to water stress in the field during summer months appeared related to gradients in leaf osmotic potential within the plant and by an age dependency in the ability of leaves to adjust osmotically when challenged by periodic water deficits. Under greenhouse conditions, older leaves senesced invariably during an imposed water stress while control leaves of comparable age and stressed younger leaves remained green. Osmotic potentials of intermediate aged and younger leaves became approximately 1 to 2 bars lower after a single cycle of imposed stress and up to 10 bars lower after two cycles of stress. Pronounced gradients in leaf osmotic potential within individual whole plants were observed following two cycles of water stress that were significantly different from control values. Osmotic adjustment was dependent on leaf age with the greatest capacity for adjustment in the intermediate aged leaves. Loss of osmotic adjustment was rapid upon rewatering with a half-life of 4 days. An irreversible component of adjustment was observed, amounting to about 10% (or 2 bars) of the maximally adjusted state. This irreversible component could be accounted for in part by significant changes in cell size and other anatomical alterations in the leaf that affect cellular osmotic volume, and, hence, cellular water relations.  相似文献   

14.
Subcellular effects of drought stress in Rosmarinus officinalis   总被引:1,自引:0,他引:1  
The use of Rosmarinus officinalis, and other wild plant species, in the Mediterranean area is an interesting solution in order to avoid the desertification and rapid soil erosion, because of their good resistance to environmental conditions. Previous articles have described experiments designed to determine the impact of water stress at the plant level in this species, but more knowledge is required at the subcellular and ultrastructural levels. An anatomic and ultrastructural study of the leaves was conducted on Rosmarinus officinalis plants growing under different water treatments. In the leaves of water-stressed plants, the leaf water potential and turgor decreased, and leaf osmotic potential became more negative with respect to control plants. The anatomic investigations showed that both the mesophyll intercellular spaces and the epidermal cell size were reduced significantly under the more intense drought stress conditions. At the subcellular level, chloroplasts accumulated plastoglobuli and lipid bodies, and cuticle thickness was increased under water stress. In our experiment, the anatomic and ultrastructural modifications of Rosmarinus officinalis could be considered an additional adaptation to drought stress together with physiological and biochemical modifications as antioxidant accumulation.  相似文献   

15.
费菜和长药八宝叶形态结构及其与耐旱性关系的研究   总被引:2,自引:0,他引:2  
利用光学显微镜观察比较了费菜(Sedum aizoon L.)和长药八宝(S. spectabilis Boreau)的叶表皮形态及解剖结构,并对其进行不同程度的水分胁迫,研究干旱逆境条件对其叶片显微结构的影响。结果表明:两种景天的叶形态、解剖结构与耐旱性之间存在较密切的相关性。两种植物成熟叶均具较薄的角质层和发达的储水组织,叶肉组织中没有栅栏组织和海绵组织的明显分化。二者的维管组织较发达,且具较发达的孔下室,维管束周边发现一些吸水能力较强的异细胞,这些特征是植物耐旱的关键。  相似文献   

16.
Cen Y.  Liu M.-Z. 《植物生态学报》2017,(11):1199-1207
Aims: To investigate the effects of dew on plants, we conducted the experiment to determine the physiological characteristics and leaf structures of Leymus chinensis and Agropyron cristatum in response to increasing dew under drought stress. Methods: Four treatments (no dew, three times dew and five times dew per week under drought stress, and well-watering) were designed to examine leaf relative water content, water potential, net photosynthetic rate, water use efficiency, biomass, and leaf structures of L. chinensis and A. cristatum. Important findings: There was a significant increase in the relative water content and water potential by simulated dew increase for two plants species under drought stress (p < 0.05). For A. cristatum, simulated dew increase significantly enhanced the net photosynthetic rate, stomatal conductance, and transpiration rate of plants under drought stress (p < 0.05). On the other hand, there was no significant difference in the stomatal conductance and transpiration rate for L. chinensis among treatments. Simulated dew increase improved the aboveground biomass and root biomass of two species. The ratio of yellow leaves to the total leaves was decreased by simulated dew increase for two species. Dew increase also protected leaf structures against the drought stress, suggesting that the dew increase can slow down the death process of leaves resulted from drought stress. Therefore, the study demonstrated that dew increased the available water for the leaves of L. chinensis and A. cristatum grown in the drought stress and thus had positive effects on the photosynthesis, water physiology and plant development.  相似文献   

17.
《植物生态学报》2017,41(11):1199
Aims To investigate the effects of dew on plants, we conducted the experiment to determine the physiological characteristics and leaf structures of Leymus chinensis and Agropyron cristatum in response to increasing dew under drought stress.Methods Four treatments (no dew, three times dew and five times dew per week under drought stress, and well-watering) were designed to examine leaf relative water content, water potential, net photosynthetic rate, water use efficiency, biomass, and leaf structures of L. chinensis and A. cristatum. Important findings There was a significant increase in the relative water content and water potential by simulated dew increase for two plants species under drought stress (p < 0.05). For A. cristatum, simulated dew increase significantly enhanced the net photosynthetic rate, stomatal conductance, and transpiration rate of plants under drought stress (p < 0.05). On the other hand, there was no significant difference in the stomatal conductance and transpiration rate for L. chinensis among treatments. Simulated dew increase improved the aboveground biomass and root biomass of two species. The ratio of yellow leaves to the total leaves was decreased by simulated dew increase for two species. Dew increase also protected leaf structures against the drought stress, suggesting that the dew increase can slow down the death process of leaves resulted from drought stress. Therefore, the study demonstrated that dew increased the available water for the leaves of L. chinensis and A. cristatum grown in the drought stress and thus had positive effects on the photosynthesis, water physiology and plant development.  相似文献   

18.
为了明晰高温胁迫下表皮蜡质在不结球白菜生理响应中的保护作用,该研究以不结球白菜有蜡(Q28)和无蜡(Q1202)品种为试验材料,设置高温胁迫组(昼/夜温度为37℃/30℃)和对照组(昼/夜温度为25℃/18℃)处理,观察不同材料叶片表皮细胞形态,比较分析高温胁迫处理下不同时期生理和光合指标变化的差异.结果 表明:(1)...  相似文献   

19.
利用光学显微镜对云南20种不同科、属的蕨类植物的叶表皮形态进行了观察和研究。结果表明:它们的叶片表面存在不同的附属物,而有的种类无附属物;20种蕨类植物共具8种气孔器类型(极细胞型、腋下细胞型、辐射状细胞型、双不等细胞型、无规则四细胞型、共环极细胞型、聚腋下细胞型和不规则型), 它们在气孔器组成上具多型现象,气孔均为下生型,分布方式及大小多样;叶表皮细胞的微形态在科属间表现出一定的差异,主要有不规则型、多边型或规则条状,表皮细胞垂周壁呈波纹状、深波状或波浪状。上述研究结果为蕨类植物的系统分类及演化提供依据。  相似文献   

20.
Thermonastic leaf movements: a synthesis of research with Rhododendron   总被引:1,自引:0,他引:1  
Thermonastic leaf movements in Rhododendron L. occur in response to freezing temperatures. These movements are composed of leaf curling and leaf angle changes that are distinct leaf movements with different responses to climatic factors. Leaf angle is controlled by the hydration of the petiole, as affected by soil water content, atmospheric vapour pressure, and air temperature. In contrast, leaf curling is a specific response to leaf temperature, and bulk leaf hydration has little effect. The physiological cause of leaf curling is not well understood, but the mechanism must lie in the physiology of the cell wall and/or regional changes in tissue hydration. Available evidence suggests that intercellular freezing is not a cause of leaf curling.
Manipulation experiments demonstrate that changes in leaf orientation in Rhododendron most likely serve to protect the leaves from membrane damage due to high irradiance and cold temperatures. In particular, the pendent leaves protect the chloroplast from photoinhibition. Leaf curling may serve to slow the rate of thaw following freezing, a common phenomenon in the Appalachian mountains of the U.S. The thermonastic leaf movements have a greater importance to plants in a dim environment because the potential impact to canopy carbon gain is greater than in high light environments.
These leaf movements have several implications for horticultural management. There seems to be a trade-off between water stress tolerance and freezing stress tolerance by leaf movements. Thermonastic leaf movements may be a major mechanism of cold stress tolerance in Rhododendron species. The actual physiological cause of leaf movement has not been elucidated and many more species need to be evaluated to verify the general importance of leaf movements to Rhododendron ecology and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号