首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
固定化脂肪酶性质及其应用研究   总被引:8,自引:0,他引:8  
利用以四甲氧基硅烷(TMOS)和甲基三甲氧基硅烷(MTMS)为前驱体的溶胶-凝胶法(sol-gel)固定洋葱假单胞菌属脂肪酶,考查了固定化酶和游离酶的酶学性质及催化不同油脂酯交换合成生物柴油的情况。结果表明,80℃以下固定化酶能保持80%以上的酶活,而游离酶在50℃以后活力急剧下降,到80℃残余酶活约为10%;固定化酶在体积分数50%的甲醇中处理48 h能保持85%的酶活,在体积分数90%的乙醇中处理48h能保持31%的酶活,而游离酶残余酶活只有69%和0;在酯交换反应中固定化酶的催化效率比游离酶高10%~20%,且固定化酶重复使用11次后仍能保持60%的酶活。结果显示,酶经过固定化后稳定性和催化活性显著提高。  相似文献   

2.
纳米酶是具有酶催化活性的纳米材料,对比天然酶,纳米酶具有价格便宜、制备工艺简单、稳定性好、循环利用率高等优势.早期的纳米酶研究主要集中在检测方面,包括检测离子、小分子、核酸、蛋白、癌细胞等,随着对纳米酶的深入了解,研究人员发现纳米酶在疾病治疗领域也具有巨大的应用前景.本论文将介绍纳米酶在杀菌、抗氧化研究领域的最新研究进展.  相似文献   

3.
陈爽  宋娜  廖学品  石碧 《生物工程学报》2011,27(7):1076-1081
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上。制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%。研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性。结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25 ℃;但固定化酶的热稳定性显著提高,在75 ℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失  相似文献   

4.
本文对聚乙二醇修饰脂肪酶、多孔玻璃载体吸附酶、多孔玻璃载体丙酮沉积酶、硅藻土吸附酶、氧化铝吸附酶和琼脂珠疏水载体吸附酶在有机相中酯合成和酯交换反应的催化作用进行了研究。实验表明,不同形式的酶需要不同的最适加水量。而且,在各自最适条件下,对各种形式酶进行了比较,得出硅藻土和琼脂珠疏水载体是很好的固定化载体,疏水性琼脂珠固定化酶在有机相中的活力比酶粉高46.5%。  相似文献   

5.
随着对DNA酶研究的进展,DNA酶的很多优点已经超越了传统的蛋白质酶,具有过氧化物酶催化活性的DNA酶在电化学生物检测上拥有很大的潜力。我们简要阐述了DNA酶的特性和应用,描述了其基本性质,对DNA酶在生物分析领域的应用进行了展望。  相似文献   

6.
溶葡萄球菌酶(Lysostaphin)是一种能高效裂解葡萄球菌细胞壁的肽链内切酶,已有研究表明其能够有效预防和去除奶牛乳腺中葡萄球菌的感染,但该酶在牛奶中的性质研究还缺少详细的研究数据.现对重组溶葡萄球菌酶在牛奶中的一些性质进行研究.检测了加入溶葡萄球茵酶后牛奶性状的变化和重组溶葡萄球菌酶在牛奶中的酶活的稳定性以及溶葡萄球菌酶在牛奶中的抑、杀菌活性.结果显示,重组溶葡萄球菌酶未改变牛奶的外观性状;并且重组溶葡萄球菌酶在39℃牛奶中可以稳定存放至少20 h以上,酶活性保持稳定;同时重组溶葡萄球菌酶在牛奶中对金黄色葡萄球菌等革兰氏阳性菌仍然保持了良好的抑杀菌效果.该研究为今后溶葡萄球菌酶用于奶牛乳腺炎的治疗提供参考依据.  相似文献   

7.
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上.制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%.研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性.结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25℃;但固定化酶的热稳定性显著提高,在75℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失活;此外,固定化过氧化氢酶还表现出了良好的操作稳定性,在室温下连续反应26次后,相对活力为57%.该研究表明胶原纤维可作为固定化过氧化  相似文献   

8.
根据我们以往的工作,高优势玉米杂种 的过氧化物酶同工酶酶谱图式之一称为互补 酶— 杂种酶带为其两亲本酶带的互补。类似 的图式BackmanE'.33等曾在玉米胚乳的亮氨酸 氨肤酶及过氧化氢酶,ScandaliOS161曾在氨肤酶, 过氧化氢酶及乙醇脱氢酶,Chiang Pai'53等曾 在水稻过氧化物酶中观察到。  相似文献   

9.
壳聚糖固定化真菌漆酶及其用于处理酚类污染物的研究   总被引:27,自引:0,他引:27  
Trametessp. AH282在液体培养条件下经邻甲苯胺诱导能有效合成漆酶同工酶A。以壳聚糖为载体,戊二醛为交联剂进行了漆酶A的固定化研究,确定酶固定化适宜条件为:0.1g壳聚糖与15 mL 5%戊二醛交联8 h后,加入30.0U酶固定12h。在此条件下获得的固定化漆酶催化能力为176.4U/g载体,酶活回收率58.5%。与游离酶相比,固定化漆酶与作用底物愈创木酚的亲和力降低,但固定化酶的稳定性有明显改善。固定化漆酶的最适温度为55℃,比游离酶提高5℃;70℃条件下保温8 h,固定化酶保留酶活56.5%,而在相同条件下游离酶酶活明显下降。使用固定化漆酶反应装置进行酚类化合物转化实验,连续进行12批次操作,固定化酶酶活仍保持60%以上,漆酶使用效率明显提高。  相似文献   

10.
融合酶技术是酶的改造技术之一。应用融合酶技术还可以创造出多功能的新酶,这些新酶有望应用于食品、化工等领域。目前研究表明,融合酶在低聚糖制备,生物燃料,生物材料,氨基酸发酵以及生物传感器等领域极具应用前景。融合酶的构建技术有理性设计和非理性设计,这两种技术各有利弊。整理了近年融合酶在以上领域中的研究成果,对融合酶的工业应用进行讨论。  相似文献   

11.
It has been observed that water, which is absolutely essential for enzyme activity, can induce the agglomeration of enzyme particles in organic media. Although enzyme agglomeration is significant in that it usually reduces enzyme activity and stability, little attention has been paid to the quantitative analysis of enzyme agglomeration behavior in nonaqueous bioactalytic systems. In this study, the effects of water and silica gel on enzyme agglomeration were investigated usingCandida rugosa lipase and cyclohexane as a model enzyme and an organic medium. The extent of enzyme agglomeration was quantified by sieve analysis of freeze-dried agglomerates. Increasing the water content of the medium increased the size of the enzyme agglomerates, and it was found that water produced during the esterification reaction could also promote the agglomeration of enzyme particles suspended in organic media. On the other hand, the size of the enzyme agglomerates was remarkably reduced in the presence of silica gel at the same water content. We also show that this increase in the size of enzyme agglomerates results in lower reaction rates in organic solvents.  相似文献   

12.
Lecithin-cholesterol acyltransferase was purified from rat plasma and the properties of this enzyme during the purification procedures and those of the purified enzyme were investigated in comparison with the human enzyme. The rat enzyme was not adsorbed on hydroxyapatite, which was employed for the purification of the human enzyme. When purified human enzyme was incubated at 37 degrees C in 0.1 mM phosphate buffer (pH 7.4; ionic strength, 0.00025), no alteration of enzyme activity was observed for up to 6 h. In the case of the rat enzyme, however, approximately 40% of the enzyme activity was lost under the same conditions. The human enzyme and rat enzyme were both retained on a Sepharose 4B column to which HDL3 was covalently linked, in 39 mM phosphate buffer, pH 7.4. Although the human enzyme was eluted from the column in 1 mM phosphate buffer, the rat enzyme was dissociated from the column at a lower buffer concentration (0.1 mM phosphate buffer). These findings indicate that the rat enzyme effectively associated with HDL3 in 39 mM phosphate buffer, pH 7.4, but the association was more sensitive to increase of ionic strength compared with that of the human enzyme.  相似文献   

13.
宫川蜜柑根际土壤酶活性与土壤养分含量相关性的研究   总被引:4,自引:0,他引:4  
研究了不同肥力水平的宫川蜜柑根际土壤酶的活性及其与土壤农化特性的关系。结果表明 :高产园的土壤酶活性显著高于低产园的土壤酶活性。经统计分析 ,土壤酶活性与养分含量均呈极显著相关。而且酶的活性在土壤中的分布有一定的规律性。其水平分布是在树冠内半径的 4 /5处至树冠滴水线范围内 ,酶的活性最高 ,由此处向内向外酶的活性逐渐降低 ;其垂直分布是 0~ 2 0 cm土层酶的活性最高 ,随土层的加深而逐渐降低  相似文献   

14.
Enzyme synthesis in the regulation of hepatic `malic'' enzyme activity   总被引:3,自引:1,他引:2  
A homogeneous preparation of ;malic' enzyme (EC 1.1.1.40) from livers of thyroxine-treated rats was used to prepare in rabbits an antiserum to the enzyme that reacts monospecifically with the ;malic' enzyme in livers of rats in several physiological states. Changes in enzyme activity resulting from modification of the state of the animal are hence due to an altered amount of enzyme protein. The antiserum has been used to precipitate out ;malic' enzyme from heat-treated supernatant preparations of livers from both adult and neonatal rats, in a number of physiological conditions, that had been injected 30min earlier with l-[4,5-(3)H]leucine. The low incorporations of radioactivity into the immunoprecipitable enzyme have permitted the qualitative conclusion that changed enzyme activity in adult rats arises mainly from alterations in the rate of enzyme synthesis. The marked increase in ;malic' enzyme activity that occurs naturally or as a result of thyroxine treatment of the weanling rat is likewise due to a marked increase in the rate of enzyme synthesis possibly associated with a concurrent diminished rate of enzyme degradation.  相似文献   

15.
Immunological characterization of maize starch branching enzymes   总被引:1,自引:1,他引:0  
Highly purified fractions of three starch branching enzymes from developing maize (Zea mays L.) endosperm were used to prepare antisera in rabbits. In double diffusion experiments, no immunoprecipitate was observed when branching enzyme IIa or IIb was tested against branching enzyme I antiserum. No immunoprecipitate was formed when branching enzyme I was tested against branching enzyme IIa or IIb antiserum. Increasing amounts of antisera in the above combinations also failed to inhibit enzyme activity. Branching enzyme IIa antiserum cross-reacted and formed spurs with branching enzyme IIb when compared with branching enzyme IIa antigen. Comparison of branching enzyme IIb antiserum with branching enzyme IIa also resulted in an immunoprecipitate. Increasing levels of branching enzyme IIa antiserum inhibited branching enzyme IIb as did the reciprocal combination. The data indicated that branching enzymes IIa and IIb are immunologically similar while branching enzyme I is distinct. The data supports the classification of starch branching enzymes based on genetic, kinetic, and chromatographic properties.  相似文献   

16.
Genetic regulation of malic enzyme activity in the mouse   总被引:1,自引:0,他引:1  
Cytosolic malic enzyme catalyzes the NADP(+)-dependent oxidative decarboxylation of malate to pyruvate and CO2. Additionally, this enzyme produces large amounts of reducing equivalents (NADPH) required for de novo fatty acid synthesis and provides a precursor for oxaloacetate replacement in the mitochondria. Malic enzyme is considered a key lipogenic enzyme and changes in enzyme activity parallel changes in the lipogenic rate. As would be expected, the activity of malic enzyme responds to a variety of dietary and hormonal factors acting mainly on the rate of enzyme synthesis. In the mouse, the structural locus for malic enzyme (Mod-1) is located on chromosome 9. Two alleles reflecting differences in electrophoretic mobility have been identified. This report demonstrates that the amount of hepatic malic enzyme activity is strain-dependent and is regulated by a malic enzyme regulator locus (Mod1r) located on the proximal end of chromosome 12. Two alleles have been identified: Mod1ra, conferring high enzyme activity (C57BL/6J), and Mod1rb, conferring low enzyme activity (C57BL/KsJ). Biochemical studies have demonstrated differences in the apparent Km and Vmax and in specific activity on purification and immunoprecipitation, features that suggest changes in enzyme structure even though no differences were observed by electrophoresis and isoelectric focusing. These combined data suggest that differences in both enzyme quantity and structure may be involved in the genetic regulation of malic enzyme activity in mice.  相似文献   

17.
Regulation of the activity and synthesis of malic enzyme in 3T3-L1 cells   总被引:1,自引:0,他引:1  
Malic enzyme activity in differentiated 3T3-L1 cells was about 20-fold greater than activity in undifferentiated cells. A new steady-state level was achieved about 8 days after initiating differentiation of confluent cultures with a 2-day exposure to dexamethasone, isobutylmethylxanthine, and insulin. This increase in enzyme activity resulted from an increase in the mass of malic enzyme as detected by immunotitration of enzyme activity with goat antiserum directed against purified rat liver malic enzyme. Malic enzyme synthesis was undetectable in undifferentiated cells and increased to about 0.2% of soluble protein in differentiated cells, suggesting that the increase in enzyme mass was due primarily to an increase in enzyme synthesis. Thyroid hormone, a potent stimulator of malic enzyme activity in hepatocytes in culture and in liver and adipose tissue in intact animals, decreased or increased malic enzyme activity in differentiating 3T3-L1 cells by about 40% when it was removed or added to the medium, respectively. Insulin, another physiologically important regulator of malic enzyme activity in vivo, had no effect on the initial rate of accumulation of malic enzyme activity in the differentiating cells and caused a 30 to 40% decrease in the final level of enzyme activity in the fully differentiated cells. Cyclic AMP, a potent inhibitor of malic enzyme synthesis in hepatocytes in culture, inhibited this process in 3T3-L1 cells by 30%. Malic enzyme is like several other enzymes in that the large increase in its concentration which accompanies differentiation of 3T3-L1 cells is due to increased synthesis of enzyme protein. However, the hormonal modulation of malic enzyme characteristic of liver and adipose tissue in intact animals does not appear to occur in differentiated 3T3-L1 cells, suggesting that differentiated 3T3-L1 cells may not be an appropriate model system in which to study the hormonal modulation of malic enzyme that occurs in liver and adipose tissue of intact animals.  相似文献   

18.
A new technique, the quantitative determination of total enzyme concentrations by specific immunoprecipitation with purified, radioiodinated antibodies, was used to investigate the presence and possible roles of inactive enzyme in the regulation of chalcone synthase. Dark-grown cell suspension cultures from parsley (Petroselinum hortense) contained neither catalytically active nor detectable amounts of immunoprecipitable chalcone synthase. Irradiation induced large increases and subsequent decreases of both. Significant differences in the peak positions and in the half-lives of active and total chalcone synthase indicated that induced cells contained inactive as well as active enzyme forms. The presence of inactive enzyme could be explained by two different modes of regulation, (i) simultaneous de novo synthesis of active and inactive enzyme (“Simultaneous Model”), or (ii) de novo synthesis of active enzyme only, with sequential steps of inactivation and degradation (“Sequential Model”). Both models were compatible with experimental results, as analyzed mathematically by investigating the relations between curves for rate of enzyme synthesis, enzyme activity, total enzyme, and half-lives of active and total enzyme. However, the “Simultaneous Model” postulated that de novo synthesis of inactive enzyme represented always the vast majority of total enzyme synthesis, while the Sequential Model integrated inactive enzyme with facility in a sequence of irreversible inactivation and degradation of active enzyme. Experiments with repeated induction indicated that cells containing large amounts of inactive enzyme increased enzyme activity by de novo synthesis rather than by activation of preexisting inactive enzyme.  相似文献   

19.
In vivo as well as in vitro supply of sodium arsenate inhibited the 5-Amino levulinic acid dehydratase (5-aminolevulinate-hydrolyase EC 4.2.1.24, ALAD) activity in excised etiolated maize leaf segments during greening. The percent inhibition of enzyme activity by arsenate (As) was reduced by the supply of KNO3, but it was increased by the glutamine and GSH. Various inhibitors, such as, chloramphenicol, cycloheximide and LA, decreased the % inhibition of enzyme activity by As. The % inhibition of enzyme activity was also reduced by in vivo supply of DTNB. The enzyme activity was reduced substantially by in vitro inclusion of LA, both in the absence and presence of As. In vitro inclusion of DTNB and GSH inhibited the enzyme activity extracted from leaf segments treated without arsenate (-As enzyme) and caused respectively no effect and stimulatory effect on arsenate treated enzyme (+As enzyme). Increasing concentration of ALA during assay increased the activity of -As enzyme and +As enzyme to different extent, but double reciprocal plots for both the enzymes were biphasic and yielded distinct S0.5 values for the two enzymes (-As enzyme, 40 micromol/L and +As enzyme, 145 micromol/L) at lower concentration range of ALA only. It is suggested that As inhibits ALAD activity in greening maize leaf segments by affecting its thiol groups and/or binding of ALA to the enzyme.  相似文献   

20.
B H Kim  T L Rosenberry 《Biochemistry》1985,24(14):3586-3592
A small hydrophobic domain in isolated human erythrocyte acetylcholinesterase is responsible for the interaction of this enzyme with detergent micelles and the aggregation of the enzyme on removal of detergent. Papain has been shown to cleave this hydrophobic domain and to generate a fully active hydrophilic enzyme that shows no tendency to interact with detergents or to aggregate [Dutta-Choudhury, T.A., & Rosenberry, T.L. (1984) J. Biol. Chem. 259, 5653-5660]. We report here that the intact enzyme could be reconstituted into phospholipid liposomes while the papain-disaggregated enzyme showed no capacity for reconstitution. More than 80% of the enzyme reconstituted into small liposomes could be released by papain digestion as the hydrophilic form. Papain was less effective in releasing the enzyme from large liposomes that were probably multilamellar. In a novel application of affinity chromatography on acridinium resin, enzyme reconstituted into small liposomes in the presence of excess phospholipid was purified to a level of 1 enzyme molecule per 4000 phospholipid molecules, a ratio expected if each enzyme molecule was associated with a small, unilamellar liposome. Subunits in the hydrophilic enzyme form released from reconstituted liposomes by papain digestion showed a mass decrease of about 2 kilodaltons relative to the intact subunits according to acrylamide gel electrophoresis in sodium dodecyl sulfate, a difference similar to that observed previously following papain digestion of the soluble enzyme aggregates. The data were consistent with the hypothesis that the same hydrophobic domain in the enzyme is responsible for the interaction of the enzyme with detergent micelles, the aggregation of the enzyme in the absence of detergent, and the incorporation of the enzyme into reconstituted phospholipid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号