首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study self-renewal and differentiation of spermatogonial stem cells, we have transplanted undifferentiated testicular germ cells of the GFP transgenic mice into seminiferous tubules of mutant mice with male sterility, such as those dysfunctioned at Steel (Sl) locus encoding the c-kit ligand or Dominant white spotting (W) locus encoding the receptor c-kit. In the seminiferous tubules of Sl/Sl(d) or Sl(17H)/Sl(17H) mice, transplanted donor germ cells proliferated and formed colonies of undifferentiated c-kit (-) spermatogonia, but were unable to differentiate further. However, these undifferentiated but proliferating spermatogonia, retransplanted into Sl (+) seminiferous tubules of W mutant, resumed differentiation, indicating that the transplanted donor germ cells contained spermatogonial stem cells and that stimulation of c-kit receptor by its ligand was necessary for maintenance of differentiated type A spermatogonia but not for proliferation of undifferentiated type A spermatogonia. Furthermore, we have demonstrated that their transplantation efficiency in the seminiferous tubules of Sl(17H)/Sl(17H) mice depended upon the stem cell niche on the basement membrane of the recipient seminiferous tubules and was increased by elimination of the endogenous spermatogonia of mutant mice from the niche by treating them with busulfan.  相似文献   

2.
Radiation and chemotherapeutic drugs cause permanent sterility in male rats, not by killing most of the spermatogonial stem cells, but by blocking their differentiation in a testosterone-dependent manner. However, it is not known whether radiation induces this block by altering the germ or the somatic cells. To address this question, we transplanted populations of rat testicular cells containing stem spermatogonia and expressing the green fluorescent protein (GFP) transgene into various hosts. Transplantation of the stem spermatogonia from irradiated adult rats into the testes of irradiated nude mice, which do not show the differentiation block of their own spermatogonia, permitted differentiation of the rat spermatogonia into spermatozoa. Conversely transplantation of spermatogonial stem cells from untreated prepubertal rats into irradiated rat testes showed that the donor spermatogonia were able to colonize along the basement membrane of the seminiferous tubules but could not differentiate. Finally, suppression of testosterone in the recipient irradiated rats allowed the differentiation of the transplanted spermatogonia. These results conclusively show that the defect caused by radiation in the rat testes that results in the block of spermatogonial differentiation is due to injury to the somatic compartment. We also observed colonization of tubules by transplanted Sertoli cells from immature rats. The present results suggest that transplantation of spermatogonia, harvested from prepubertal testes to adult testes that have been exposed to cytotoxic therapy might be limited by the somatic damage and may require hormonal treatments or transplantation of somatic elements to restore the ability of the tissue to support spermatogenesis.  相似文献   

3.
The spermatogonial transplantation system was applied to evaluate stem cell kinetics and niche quality and to produce gene-modified animals using the stem cells after homologous recombination-based selection. This study was designed to determine whether the transplanted spermatogonia were able to proliferate and differentiate in male rats expressing the c-myc transgene under control of the human metallothionein IIA promoter (MT-myc Tg rats). Donor testicular cells were prepared from heterozygous chicken beta actin (CAG)/enhanced green fluorescent protein (EGFP)-transgenic rats (EGFP Tg rats) during the second week after birth and injected into the seminiferous tubules of the MT-myc Tg rats (line-A and -B; both subfertile) or rats pretreated with busulfan to remove endogenous spermatogonia. Three to four months after transplantation, cell colonies with EGFP fluorescence were detected in 36% (4/11), 40% (8/20), and 71% (5/7) of the transplanted testes in line-A MT-myc Tg rats, line-B MT-myc Tg rats, and busulfan-treated rats, respectively. No EGFP-positive colonies were detected when wild-type male rats were used as recipients (0/7; testis-basis). The histopathological and immunofluorescent examination of the serial sections from the transplanted testes showed normal spermatogenesis of the donor spermatogonia, but atrophy of the recipient seminiferous tubules. Microinsemination with round spermatids and mature spermatozoa derived from EGFP-positive testes in line-A rats resulted 26% (10/39 transferred) and 23% (11/48 transferred) full-term offspring, respectively. Thus, the MT-myc Tg male rats were suitable as potent recipients for spermatogonial transplantation without any chemical pretreatment to remove the endogenous spermatogonia.  相似文献   

4.
Primate spermatogonial stem cells colonize mouse testes   总被引:17,自引:0,他引:17  
In mice, transplantation of spermatogonial stem cells from a fertile male to the seminiferous tubules of an infertile recipient male results in progeny with donor-derived haplotype. Attempts to extend this approach by transplanting human testis cells to mice have led to conflicting claims that no donor germ cells persisted or that human spermatozoa were produced in the recipient. To examine this issue we used the baboon, a primate in which testis cell populations of several ages could be obtained for transplantation, and demonstrate that donor spermatogonial stem cells readily establish germ cell colonies in recipient mice, which exist for periods of at least 6 mo. However, differentiation of germ cells toward the lumen of the tubule and production of spermatozoa did not occur. The presence of baboon spermatogonial stem cells and undifferentiated spermatogonia in mouse seminiferous tubules for long periods after transplantation indicates that antigens, growth factors, and signaling molecules that are necessary for interaction of these cells and the testis environment have been preserved for 100 million years of evolutionary separation. Because germ cell differentiation and spermatogenesis did not occur, the molecules necessary for this process appear to have undergone greater divergence between baboon and mouse.  相似文献   

5.
To study the mechanism of male germ cell differentiation, testicular germ cells carrying green fluorescent protein (GFP) as a transgene marker were transplanted into infertile mouse testis. Fluorescence-positive seminiferous tubule segments colonized with GFP-labeled donor germ cells were isolated and measured, and differentiated germ cells were analyzed in living squashed preparations. Cell associations in normal stages of the seminiferous epithelial cycle were also studied and used as a reference. Two months after transplantation, the average length of the colonies was 1.3 mm. The cell associations of transplanted colonies were consistent with those of normal stages of the cycle. However, stages of the cycle were not necessarily identical in different colonies. Three months after transplantation, the average length of transplanted colonies was 3.4 mm, and the cell association in every portion of a colony was similar to that of the corresponding stage of the cycle. Even in long fused colonies made by transplantation of a higher concentration of male germ cells, the cell association patterns in various regions of a single colony were similar and consistent with those of some of the normal stages of the cycle. Development of different stages inside the colony was observed by 6 mo after transplantation. These results indicate that the commencement of spermatogonial stem cell differentiation occurs randomly to develop different stages of the cycle in different colonies. Then, each colony shows one single stage of the cycle for a long time, even if it becomes a very large colony or fuses with other colonies. These observations indicate the existence of some kind of synchronization mechanism. By 6 mo, however, normal development of the stages of the cycle appeared in seminiferous tubules.  相似文献   

6.
The sex-determining region of Chr Y (Sry) gene is sufficient to induce testis formation and the subsequent male development of internal and external genitalia in chromosomally female mice and humans. In XX sex-reversed males, such as XX/Sry-transgenic (XX/Sry) mice, however, testicular germ cells always disappear soon after birth because of germ cell-autonomous defects. Therefore, it remains unclear whether or not Sry alone is sufficient to induce a fully functional testicular soma capable of supporting complete spermatogenesis in the XX body. Here, we demonstrate that the testicular somatic environment of XX/Sry males is defective in supporting the later phases of spermatogenesis. Spermatogonial transplantation analyses using XX/Sry male mice revealed that donor XY spermatogonia are capable of proliferating, of entering meiosis and of differentiating to the round-spermatid stage. XY-donor-derived round spermatids, however, were frequently detached from the XX/Sry seminiferous epithelia and underwent cell death, resulting in severe deficiency of elongated spermatid stages. By contrast, immature XY seminiferous tubule segments transplanted under XX/Sry testis capsules clearly displayed proper differentiation into elongated spermatids in the transplanted XY-donor tubules. Microarray analysis of seminiferous tubules isolated from XX/Sry testes confirmed the missing expression of several Y-linked genes and the alterations in the expression profile of genes associated with spermiogenesis. Therefore, our findings indicate dysfunction of the somatic tubule components, probably Sertoli cells, of XX/Sry testes, highlighting the idea that Sry alone is insufficient to induce a fully functional Sertoli cell in XX mice.  相似文献   

7.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

8.
Mutations in the dominant-white spotting (W; c-kit) and stem cell factor (Sl; SCF) genes, which encode the transmembrane tyrosine kinase receptor and its ligand, respectively, affect both the proliferation and differentiation of many types of stem cells. Almost all homozygous W or Sl mutant mice are sterile because of the lack of differentiated germ cells or spermatogonial stem cells. To characterize spermatogenesis in c-kit/SCF mutants and to understand the role of c-kit signal transduction in spermatogonial stem cells, the existence, proliferation, and differentiation of spermatogonia were examined in the W/Wv mutant mouse testis. In the present study, some of the W/Wv mutant testes completely lacked spermatogonia, and many of the remaining testes contained only a few spermatogonia. Examination of the proliferative activity of the W/Wv mutant spermatogonia by transplantation of enhanced green fluorescent protein (eGFP)-labeled W/Wv spermatogonia into the seminiferous tubules of normal SCF (W/Wv) or SCF mutant (Sl/Sld) mice demonstrated that the W/Wv spermatogonia had the ability to settle and proliferate, but not to differentiate, in the recipient seminiferous tubules. Although the germ cells in the adult W/Wv testis were c-kit-receptor protein-negative undifferentiated type A spermatogonia, the juvenile germ cells were able to differentiate into spermatogonia that expressed the c-kit-receptor protein. Furthermore, differentiated germ cells with the c-kit-receptor protein on the cell surface could be induced by GnRH antagonist treatment, even in the adult W/Wv testis. These results indicate that all the spermatogonial stem cell characteristics of settlement, proliferation, and differentiation can be demonstrated without stimulating the c-kit-receptor signal. The c-kit/SCF signal transduction system appears to be necessary for the maintenance and proliferation of differentiated c-kit receptor-positive spermatogonia but not for the initial step of spermatogonial cell differentiation.  相似文献   

9.
Germ cell transplantation was developed by Dr. Ralph Brinster and colleagues at the University of Pennsylvania in 19941,2. These ground-breaking studies showed that microinjection of germ cells from fertile donor mice into the seminiferous tubules of infertile recipient mice results in donor-derived spermatogenesis and sperm production by the recipient animal2. The use of donor males carrying the bacterial β-galactosidase gene allowed identification of donor-derived spermatogenesis and transmission of the donor haplotype to the offspring by recipient animals1. Surprisingly, after transplantation into the lumen of the seminiferous tubules, transplanted germ cells were able to move from the luminal compartment to the basement membrane where spermatogonia are located3. It is generally accepted that only SSCs are able to colonize the niche and re-establish spermatogenesis in the recipient testis. Therefore, germ cell transplantation provides a functional approach to study the stem cell niche in the testis and to characterize putative spermatogonial stem cells. To date, germ cell transplantation is used to elucidate basic stem cell biology, to produce transgenic animals through genetic manipulation of germ cells prior to transplantation4,5, to study Sertoli cell-germ cell interaction6,7, SSC homing and colonization3,8, as well as SSC self-renewal and differentiation9,10.Germ cell transplantation is also feasible in large species11. In these, the main applications are preservation of fertility, dissemination of elite genetics in animal populations, and generation of transgenic animals as the study of spermatogenesis and SSC biology with this technique is logistically more difficult and expensive than in rodents. Transplantation of germ cells from large species into the seminiferous tubules of mice results in colonization of donor cells and spermatogonial expansion, but not in their full differentiation presumably due to incompatibility of the recipient somatic cell compartment with the germ cells from phylogenetically distant species12. An alternative approach is transplantation of germ cells from large species together with their surrounding somatic compartment. We first reported in 2002, that small fragments of testis tissue from immature males transplanted under the dorsal skin of immunodeficient mice are able to survive and undergo full development with the production of fertilization competent sperm13. Since then testis tissue xenografting has been shown to be successful in many species and emerged as a valuable alternative to study testis development and spermatogenesis of large animals in mice14.  相似文献   

10.
Successful intra- and interspecific male germ cell transplantation in the rat   总被引:12,自引:0,他引:12  
The lumen of the seminiferous tubules has hitherto been regarded as an immunologically privileged site. We report here the birth of young following transplantation of stem spermatogonia from Long-Evans rats to the seminiferous tubules of Sprague-Dawley rats after treatment with the immunosuppressive agent cyclosporin. Follicle-stimulating hormone was also given to stimulate Sertoli cell proliferation, and testosterone to stimulate the recovery of spermatogenesis. Donor germ cells underwent normal spermatogenesis, and progeny were repeatedly produced from the donor germ cells as demonstrated by microsatellite paternity analysis. In addition, donor germ cells from the cryptorchid testes of LacZ mice were also able to colonize the seminiferous tubules of Sprague-Dawley rats using this protocol. Morphologically normal rat and mouse spermatozoa were present in the epididymis and vas deferens of the recipient rats. This highlights the potential for transplantation of male germ cells between different species.  相似文献   

11.
Apoptosis plays an important role in controlling germ cell numbers and restricting abnormal cell proliferation during spermatogenesis. The tumor suppressor protein, p53, is highly expressed in the testis, and is known to be involved in apoptosis, which suggests that it is one of the major causes of germ cell loss in the testis. Mice that are c-kit/SCF mutant (Sl/Sld) and cryptorchid show similar testicular phenotypes; they carry undifferentiated spermatogonia and Sertoli cells in their seminiferous tubules. To investigate the role of p53-dependent apoptosis in infertile testes, we transplanted p53-deficient spermatogonia that were labeled with enhanced green fluorescence protein into cryptorchid and Sl/Sld testes. In cryptorchid testes, transplanted p53-deficient spermatogonia differentiated into spermatocytes, but not into haploid spermatids. In contrast, no differentiated germ cells were observed in Sl/Sld mutant testes. These results indicate that the mechanism of germ cell loss in the c-kit/SCF mutant is not dependent on p53, whereas the apoptotic mechanism in the cryptorchid testis is quite different (i.e., although the early stage of differentiation of spermatogonia and the meiotic prophase is dependent on p53-mediated apoptosis, the later stage of spermatids is not).  相似文献   

12.
Recently a system was developed in which transplanted donor spermatogonial stem cells establish complete spermatogenesis in the testes of an infertile recipient. To obtain insight into stem cell activity and the behavior of donor germ cells, the pattern and kinetics of mouse spermatogonial colonization in recipient seminiferous tubules were analyzed during the 4 mo following transplantation. The colonization process can be divided into three continuous phases. First, during the initial week, transplanted cells were randomly distributed throughout the tubules, and a small number reached the basement membrane. Second, from 1 wk to 1 mo, donor cells on the basement membrane divided and formed a monolayer network. Third, beginning at about 1 mo and continuing throughout the observation period, cells in the center of the network differentiated extensively and established a colony of spermatogenesis, which expanded laterally by repeating phase two and then three. An average of 19 donor cell-derived colonies developed from 10(6) cells transplanted to the seminiferous tubules of a recipient testis; the number of colonized sites did not change between 1 and 4 mo. However, the length of the colonies increased from 0.73 to 5.78 mm between 1 and 4 mo. These experiments establish the feasibility of studying in a systematic and quantitative manner the pattern and kinetics of the colonization process. Using spermatogonial transplantation as a functional assay, it should be possible to assess the effects of various treatments on stem cells and on recipient seminiferous tubules to provide unique insight into the process of spermatogenesis.  相似文献   

13.
Germ cell transplantation offers promising applications in finfish aquaculture and the preservation of endangered species. Here, we describe an intraperitoneal spermatogonia transplantation procedure in the Nile tilapia Oreochromis niloticus. Through histological analysis of early gonad development, we first determined the best suitable stage at which exogenous germ cells should be transplanted into the recipients. For the transplantation procedure, donor testes from a transgenic Nile tilapia strain carrying the medaka β-actin/enhanced green fluorescent protein (EGFP) gene were subjected to enzymatic dissociation. These testicular cells were then stained with PKH26 and microinjected into the peritoneal cavity of the recipient fish. To confirm colonization of the donor-derived germ cells, the recipient gonads were examined by fluorescent and confocal microscopy. PKH26-labeled cells exhibiting typical spermatogonial morphology were incorporated into the recipient gonads and were not rejected within 22 days posttransplantation. Long-term survival of transgenic donor-derived germ cells was then verified in the gonads of 5-month-old recipients and in the milt and vitelogenic oocytes of 1-year-old recipients, by means of PCR using EGFP-specific primers. EGFP-positive milt from adult male recipients was used to fertilize non-transgenic oocytes and produced transgenic offspring expressing the donor-derived phenotype. These results imply that long-term survival, proliferation, and differentiation of the donor-derived spermatogonia into vitelogenic oocytes and functional spermatozoa are all possible. Upon further improvements in the transplantation efficiency, this intraperitoneal transplantation system could become a valuable tool in the conservation of genetic resources for cichlid species.  相似文献   

14.
Germ cell transplantation in pigs.   总被引:21,自引:0,他引:21  
Spermatogonial stem cells form the foundation of spermatogenesis, and their transplantation provides a unique opportunity to study spermatogenesis and may offer an alternative approach for animal transgenesis. This study was designed to extend the technique of spermatogonial transplantation to an economically important, large-animal model. Isolated immature pig testes were used to develop the intratesticular injection technique. Best results of intratubular germ cell transfer were obtained when a catheter was inserted into the rete testis under ultrasound guidance. The presence of infused dye or labeled cells was confirmed in the seminiferous tubules from 70 of 89 injected isolated testes. Infusion of 3-6 ml of dye solution or cell suspension could fill the rete and up to 50% of seminiferous tubules. The technique was subsequently applied in vivo. Donor cells included testis cells from 1- or 10-wk-old boars (from the recipients' contralateral testis or unrelated donors) and those from mice carrying a marker gene. Porcine testis cells were labeled with a fluorescent marker before transplantation. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Labeled porcine donor cells were found in numerous seminiferous tubules from 10 of 11 testes receiving pig cells. These results indicate that germ cell transplantation is feasible in immature pigs, and that porcine transplanted cells are retained in the recipient testis for at least 1 mo. This study represents a first step toward successful spermatogonial transplantation in a farm animal species.  相似文献   

15.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

16.
The objectives were to develop a transplantation assay for equine testicular cells using busulfan-treated prepubertal immunocompetent rats as recipients, and to determine if putative equine spermatogonial stem cells (SSCs) could be enriched by flow cytometric cell sorting (based on light scattering properties), thereby improving engraftment efficiency. Four weeks after transplantation of frozen/thawed PKH26-labeled equine testicular cells, 0.029 ± 0.045% (mean ± SD) of viable donor cells transplanted had engrafted. Donor cells were present in seminiferous tubules of all recipient rats forming chains, pairs, mesh structures, or clusters (with two to >30 cells/structure). Cells were localized to the basal compartment by the basement membrane. Although equine cells proliferated within rat seminiferous tubules, no donor-derived spermatogenesis was evident. Furthermore, there was no histologic evidence of acute cellular rejection. No fluorescent cells were present in control testes. When equine testicular cells were sorted based on light scattering properties, the percentage of transplanted donor cells that engrafted was higher after injection of cells from the small, low complexity fraction (II; 0.169 ± 0.099%) than from either the large, high complexity fraction (I; 0.046 ± 0.051%) or unsorted cells (0.009 ± 0.007%; P < 0.05). Seminiferous tubules of busulfan-treated prepubertal immunocompetent rats provided a suitable niche for engraftment and proliferation, but not differentiation, of equine testicular cells. Sorting equine testicular cells based on light scattering properties resulted in a 19-fold improvement in colonization efficiency by cells with high forward scatter and low side scatter, which may represent putative equine SSCs.  相似文献   

17.
Ground Skink (Scincella lateralis) testes were examined histologically to determine the testicular organization and germ cell development strategy employed during spermatogenesis. Testicular tissues were collected from 19 ground skinks from Aiken County, South Carolina during the months of March-June, August, and October. The testes consisted of seminiferous tubules lined with germinal epithelia in which germ cells matured in close association with Sertoli cells. As germ cells matured, they migrated away from the basal lamina of the epithelia towards the lumina of the seminiferous tubules. The testes were spermatogenically active during the months of March, April, May, June, and October (largest seminiferous tubule diameters and epithelial heights), but entered a quiescent period in August (smallest seminiferous tubule diameter and epithelial height) where only spermatogonia type A and B and early spermatocytes were present in low numbers within the seminiferous epithelium. Although the testicular organization was similar to other amniotes, a temporal germ cell development strategy was employed during spermatogenesis within Ground Skinks, similar to that of anamniotes. Thus, this skink's germ cell development strategy, which also has been recently reported in all other major reptilian clades, may represent an evolutionary intermediate in terms of testicular organization between anamniotes and birds and mammals.  相似文献   

18.
Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient's testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa.Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens.  相似文献   

19.
The present study was conducted to evaluate the development of spermatogenesis and utility of using electroporation to stably transfect germ cells with the beta-galactosidase gene in neonatal bovine testicular tissue ectopically xenografted onto the backs of recipient nude mice. Bull testicular tissue from 4-wk donor calves, which contains a germ cell population consisting solely of gonocytes or undifferentiated spermatogonia, was grafted onto the backs of castrated adult recipient nude mice. Testicular grafts significantly increased in weight throughout the grafting period and the timing of germ cell differentiation in grafted tissue was consistent with postnatal testis development in vivo relative to the bull. Seminiferous tubule diameter also significantly increased with advancing time after grafting. At 1 wk after grafting, gonocytes in the seminiferous cords completed migration to the basement membrane and differentiated germ cell types could be observed 24 wk after grafting. The presence of elongating spermatids at 24 wk confirmed that germ cell differentiation occurred in the bovine tissue. Leydig cells in the grafted bovine tissue were also capable of producing testosterone in the castrated recipient mice from 4 wk to 24 wk after grafting at concentrations that were similar to levels in intact, nongrafted control mice. The testicular tissue that had been electroporated with a beta-galactosidase expression vector showed tubule-specific transgene expression 24 wk after grafting. Histological analysis showed that transgene expression was present in both Sertoli and differentiated germ cells but not in interstitial cells. The system reported here has the potential to be used for generation of transgenic bovine spermatozoa.  相似文献   

20.
Germ cell transplantation in goats   总被引:19,自引:0,他引:19  
Transplantation of spermatogonial stem cells provides a unique approach for the study of spermatogenesis and manipulation of the male germ line. This technique may also offer an alternative to the currently inefficient methods of producing transgenic domestic animals. We have recently established the technique of spermatogonial transplantation, originally developed in laboratory rodents, in pigs, and this study was aimed to extend the technique to the goat. Isolated donor testis cells were infused into the seminiferous tubules of anesthetized recipient goats through an ultrasonographically-guided catheter inserted into the rete testis. Donor cells were obtained by enzymatic digestion of freshly collected testes from immature goats (either from the recipients' contralateral testis or from unrelated donors). Prior to transplantation, testis cells were labeled with a fluorescent marker to allow identification after transplantation. Recipient testes were examined for the presence and localization of labeled donor cells at 3-week intervals up to 12 weeks after transplantation. Labeled donor cells were found in the seminiferous tubules of all testes, comprising 10-35% of the examined tubules. Histological examination of the recipient testes did not reveal evident tissue damage, except for limited fibrotic changes at the site of needle insertion. Likewise there were no detectable local or systemic signs of immunologic reactions to the transplantations. These results indicate that germ cell transplantation is technically feasible in immature male goats and that donor-derived cells are retained in the recipient testis for at least three months and through puberty. This study represents the first report of germ cell transplantation in goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号