首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,KATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.  相似文献   

2.
The transport of selected neutral amino acids known as good substrates of amino acid transport System L has been studied in chick embryo fibroblasts exposed for 4 hours to hyperosmolar culture medium. The activity of the L system, as measured by initial rates of L-phenylalanine uptake, increased in hyperosmolarity treated cells when determined before any cell depletion of intracellular amino acids. This effect was lost after depletion but reappeared after reloading the cells with pertinent substrates of System L. This transport activity appeared to be related to the internal level of amino acids capable of exchange through System L. In hyperosmolarity-treated chick embryo fibroblasts a higher level of System L substrates was obtained during the reloading phase in comparison to control cells. This expanded amino acid pool reflected an increased activity of transport System A, an agency of amino acid mediation known to enlarge its capacity following a hyperosmolar treatment of chick embryo fibroblasts (see Tramacere et al., 1984). L-Methionine, a preferred substrate of both A and L systems, appeared to be involved in the coupling between the activity of amino acid transport Systems A and L in these cells.  相似文献   

3.
The response to chronic hypertonic stress has been studied inhuman endothelial cells derived from saphenous veins. In complete growth medium the full recovery of cell volume requires several hoursand is neither associated with an increase in cellK+ nor hindered by bumetanide butdepends on an increased intracellular pool of amino acids. The highestincrease is exhibited by neutral amino acid substrates of transportsystem A, such as glutamine and proline, and by the anionic amino acidglutamate. Transport system A is markedly stimulated on hypertonicstress, with an increase in activity roughly proportional to the extentand the duration of the osmotic shrinkage. Cycloheximide prevents the increase in transport activity of system A and the recovery of cellvolume. It is concluded that human endothelial cells counteract hypertonic stress through the stimulation of transport system A and theconsequent expansion of the intracellular amino acid pool.  相似文献   

4.
System A is a secondary active, sodium dependent transport system for neutral amino acids. Strictly coupled with Na,K-ATPase, its activity determines the size of the intracellular amino acid pool, through a complex network of metabolic reaction and exchange fluxes. Many hormones and drugs affect system A activity in specific cell models or tissues. In all the cell models tested thus far the activity of the system is stimulated by amino acid starvation, cell cycle progression, and the incubation under hypertonic conditions. These three conditions produce marked alterations of cell volume. The stimulation of system A activity plays an important role in cell volume restoration, through an expansion of the intracellular amino acid pool. Under normal conditions, system A substrates represent a major fraction of cell compatible osmolytes, organic compounds that exert a protein stabilizing effect. It is, therefore, likely that the activation of system A represents a portion of a more complex response triggered by exposure to stresses of various nature. Since system A transporters have been recently cloned, the molecular bases of these regulatory mechanisms will probably be elucidated in a short time.  相似文献   

5.
6.
We investigated the molecular mechanism involved in the adaptive regulation of the amino acid transport system A, a process in which amino acid starvation induces the transport activity. These studies were done with rat C6 glioma cells. System A activity in these cells is mediated exclusively by the system A subtype, amino acid transporter A2 (ATA2). The other two known system A subtypes, ATA1 and ATA3, are not expressed in these cells. Exposure of these cells to an amino acid-free medium induces system A activity. This process consists of an acute phase and a chronic phase. Laser-scanning confocal microscopic immunolocalization of ATA2 reveals that the acute phase is associated with recruitment of preformed ATA2 from an intracellular pool to the plasma membrane. In contrast, the chronic phase is associated with an induction of ata2 gene expression as evidenced from the increase in the steady-state levels of ATA2 mRNA, restoration of the intracellular pool of ATA2 protein, and blockade of the induction by cycloheximide and actinomycin D. The increase in system A activity induced by amino acid starvation is blocked specifically by system A substrates, including the non-metabolizable alpha-(methylamino)isobutyric acid.  相似文献   

7.
8.
Amino acid starvation markedly stimulates the activity of system A, a widely distributed transport route for neutral amino acids. The involvement of MAPK (mitogen-activated protein kinase) pathways in this adaptive increase of transport activity was studied in cultured human fibroblasts. In these cells, a 3-fold stimulation of system A transport activity required a 6-h amino acid-free incubation. However, a rapid tyrosine phosphorylation of ERK (extracellular regulated kinase) 1 and 2, and JNK (Jun N-terminal kinase) 1, but not of p38, was observed after the substitution of complete medium with amino acid-free saline solution. ERK1/2 activity was 4-fold enhanced after a 15-min amino acid-free incubation and maintained at stimulated values thereafter. A transient, less evident stimulation of JNK1 activity was also detected, while the activity of p38 was not affected by amino acid deprivation. PD98059, an inhibitor of ERK1/2 activation, completely suppressed the adaptive increase of system A transport activity that, conversely, was unaffected by inhibitors of other transduction pathways, such as rapamycin and wortmannin, as well as by chronic treatment with phorbol esters. In the presence of either L-proline or 2-(methylaminoisobutyric) acid, two substrates of system A, the transport increase was prevented and no sustained stimulation of ERK1/2 was observed. To identify the stimulus that maintains MAPK activation, cell volume was monitored during amino acid-free incubation. It was found that amino acid deprivation caused a progressive cell shrinkage (30% after a 6-h starvation). If proline was added to amino acid-starved, shrunken cells, normal values of cell volume were rapidly restored. However, proline-dependent volume rescue was hampered if cells were pretreated with PD98059. It is concluded that (a) the triggering of adaptive increase of system A activity requires a prolonged activation of ERK1 and 2 and that (b) cell volume changes, caused by the depletion of intracellular amino acid pool, may underlie the activation of MAPKs.  相似文献   

9.
10.
The transport of selected neutral and cationic amino acids has been studied in Balb/c 3T3, SV3T3, and SV3T3 revertant cell lines. After properly timed preincubations to control the size of internal amino acid pools, the activity of systems A, ASC, L, and Ly+ has been discriminated by measurements of amino acid uptake (initial entry rate) in the presence and absence of sodium and of transportspecific model substrates. L-Proline, 2-aminoisobutyric acid, and glycine were primarily taken up by system A; L-alanine and L-serine by system ASC; L-phenylalanine by system L; and L-lysine by system Ly+ in SV3T3 cells. L-Proline and L-serine were also preferential substrates of systems A and ASC, respectively, in 3T3 and SV3T3 revertant cells. Transport activity of the Na+-dependent systems A and ASC decreased markedly with the increase of cell density, whereas the activity of the Na+-independent systems L and Ly+remained substantially unchanged. The density-dependent change in activity of system A occurred through a mechanism affecting transport maximum (Vmax) rather than substrate concentration for half-maximal velocity (Km). Transport activity of systems A and ASC was severalfold higher in transformed SV3T3 cells than in 3T3 parental cells at all the culture densities that could be compared. In SV3T3 revertant cells, transport activity by these systems remained substantially similar to that observed in transformed SV3T3 cells. The results presented here add cell density as a regulatory factor of the activity of systems A and ASC, and show that this control mechanism of amino acid transport is maintained in SV40 virus-transformed 3T3 cells that have lost density-dependent inhibition of growth, as well as in SV3T3 revertant cells that have resumed it.  相似文献   

11.
The activity of transport system A for neutral amino acids is adaptively stimulated upon amino acid starvation. In cultured human fibroblasts this treatment causes an increase in the expression of the ATA2 system A transporter gene. ATA2 mRNA increase and transport stimulation are suppressed by system A substrates, but they are unaffected by other amino acids. Supplementation of amino acid-starved cells with substrates of system A causes a decrease in both ATA2 mRNA and system A transport activity. These results suggest a direct relationship between ATA2 expression and system A transport activity.  相似文献   

12.
The mechanisms of transport of p-(dihydroxyboryl)-phenylalanine (BPA) through the cell membrane were investigated in vitro, evaluating especially the systems responsible for the transport of neutral amino acids as potential carriers for BPA. Rat 9L gliosarcoma cells and Chinese hamster V79 cells were exposed to BPA under controlled conditions and in a defined medium that was free of amino acids. The time course of (10)B (delivered by BPA) uptake and efflux was measured under different conditions. To analyze the intracellular boron content, direct-current plasma atomic emission spectroscopy (DCP-AES) was used after separating the cells from extracellular boron in the cell medium using an oil filtration technique. The dependence of factors such as cell type, temperature, composition and concentration of amino acids and specific substrates for amino acid transport systems in the culture medium or in intracellular compartments on BPA uptake and efflux were studied. The results of this study support the hypothesis that BPA is transported by the L system and that transport can be further stimulated by amino acids preaccumulated in the cell by either the L or A amino acid transport system. Copyright [bj54] by Radiation Research Society  相似文献   

13.
Amino acid transport in Madin-Darby canine kidney (MDCK) cells, grown in a defined medium, was investigated as a function of cell density, exposure to specific growth factors, and transformation. MDCK cells were found to transport neutral amino acids by systems similar to the A, ASC, L, and N systems which have been characterized using other cell lines. Experimental conditions were developed for MDCK cells which allowed independent measurement of A, ASC, and L transport activities. The activity of the L system was measured as Na+-independent leucine or methionine uptake at pH 7.4. The activity of the A system was measured as Na+-dependent α(methylamino)isobutyric acid (mAIB) uptake at pH 7.4, the activity of the ASC system was measured as Na+-dependent alanine uptake in the presence of 0.1 mM mAIB at pH 6.0, and the activity of system N was observed by measuring Na+-dependent glutamine uptake at pH 7.4 in the presence of high concentrations of A and ASC system substrates. The L transport system responded minimally to changes in growth state, but Na+-dependent amino add transport responded to regulation by growth factors, cell density, and transformation. The activities of the A and ASC systems both decreased at high cell density, but these activities responded dissimilarly under other conditions. The activity of the A system was stimulated by insulin, was inhibited by PGE1, and was elevated 3–7 fold in the transformed cell line, MDCK-T1. The activity of the ASC system was slightly stimulated by insulin and by PGE1, but was unchanged after chemical transformation. Changes in cellular growth were monitored and were found to correlate best with the activity of the A system. These results suggested that MDCK cell growth may be more closely related to the activity of the A than of the ASC system.  相似文献   

14.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

15.
M1 cells derived from mouse myeloid leukemia have been reported to differentiate to macrophage-like cells upon treatment with substances such as lipopolysaccharide. Previously we found that in mouse peritoneal macrophages most of the neutral amino acids were taken up through a unique Na+-independent system. In this paper we have investigated the neutral amino acid transport in M1 cells and in those treated with lipopolysaccharide. In M1 cells serine, alanine and proline were taken up mainly by Na+-dependent transport systems, and leucine was largely transported by a Na+-independent system. By treating the cells with lipopolysaccharide, the activities of the Na+-dependent systems markedly decreased, whereas the activity of the Na+-independent system was little affected. The amino acid concentrations in the cells and the culture medium were measured. As a whole, the intracellular to extracellular distribution ratios for neutral amino acids that are preferred substrates for Na+-dependent systems were decreased on lipopolysaccharide treatment, whereas those for amino acids that are mainly transported by a Na+-independent system were slightly increased. From these results we conclude that M1 cells treated with lipopolysaccharide tend to differentiate to macrophage-like cells with respect to the neutral amino acid transport.  相似文献   

16.
Summary. In 3T3 cells temperatures higher than physiological stimulated amino acid transport activity in a dose-dependent manner up to 44°C. However, the temperature increase did not induce widespread transport increase of all other nutrients tested. The activities of both amino acid transport systems A and ASC were enhanced within a few minutes following cell exposure to increased temperature. The maintenance of this effect required continuous exposure of the cells to hyperthermia. Kinetic analysis indicated that the stimulation of the activity of transport System A occurred through a mechanism affecting Vmax rather than Km. The continuous presence of cycloheximide did not prevent the transport changes induced by hyperthermia. These results suggest that the increased amino acid uptake reflects an activation or relocation of existing amino acid transport proteins. During the hyperthermic treatment, the content of ninhydrin-positive substances (NPS), mostly amino acids, increased within the cells and the accumulation of these compatible osmolytes was parallelled by an increase in cell volume. The withdrawal of amino acids from the culture medium immediately before and during the shock phase counteracted the increase and reduced the NPS content but did not prevent the increase in amino acid transport, the cell swelling and the induction of the heat shock response. Received June 30, 1999 Accepted July 27, 2000  相似文献   

17.
When mamalian cells are starved for amino acids, the activity of the A amino acid transport system increases, a phenomenon called adaptive regulation. We have examined the effects of those factors which support Madin-Darby canine kidney (MDCK) cell growth in a defined medium on the derepression of System A activity. Of the five factors which supported MDCK cell growth, insulin was found to be an absolute requirement for derepression. In contrast, PGE1 was a negative controlling factor for the transport system. Growth of MDCK cells in the absence of PGE1 resulted in elevated System A activity which derepressed poorly upon amino acid starvation. Kinetic analysis of α-(methylamino) isobutyric acid (mAIB) uptake as a function of substrate concentration showed that the elevated A activity observed when cells were grown in the absence of PGE1 was kinetically similar to the activity induced by starvation for amino acids. Transport of mAIB by amino-acid-fed cells grown in the presence of PGE1 was characterized by a linear Eadie-Hofstee graph and by a relatively low Vmax. Transport by cells starved for amino acids or by cells grown in the absence of PGE1 was characterized by biphasic kinetics for mAIB transport and by elevated Vmax values. An influence of growth factors on the inactivation of derepressed A activity was also observed. In the presence of cycloheximide the rate of loss of A activity in amino-acid-starved cells was 1/4–1/2 that of amino-acid-fed cells. Insulin slowed inactivation in the absence of most amino acids in a protein-synthesis-independent manner, but insulin did not influence the more rapid inactivation observed in amino-acid-fed cells. These results indicate that the level of System A activity observed in response to regulation by amino acids represents a balance between carrier synthesis and inactivation, which can be positively or negatively influenced by growth factors.  相似文献   

18.
Compartmentalization of cellular amino acid pools occurs in cultures of cardiac and skeletal muscle cells, but the factors involved in this are not clear. We have further defined this problem by analyzing the intracellular free leucine and the transfer-RNA-(tRNA)-bound leucine pool in cultures of skeletal and cardiac muscle incubated with 3H-leucine in the presence and absence of serum and amino acids. Withdrawal of nitrogen substrates caused substantial changes in leucine pool relationships–in particular, a change in the degree to which intracellular free leucine and tRNA-leucine were derived from the culture medium. In separate experiments, the validity of our tRNA measurements was confirmed by measurements of the specific activity of newly synthesized ferritin after iron induction. We discuss the implications of these findings with regard-to factors involved in the control of amino acid flux through the cell, as well as with regard to design of experiments using isotopic amino acids to measure rates of amino acid utilization.  相似文献   

19.
The effects of glucagon on amino acid transport in rat hepatocytes are not fully understood. We examined the effect of this hormone on alanine, serine and cysteine preferring system (system ASC)-mediated amino acid transport in rat hepatocyte monolayers using 2-aminoisobutyric acid (AIB) and L -cysteine. Glucagon induced a time and protein synthesis-dependent stimulation of Na+-dependent alanine preferring system (system A)-independent AIB transport. The glucagon-induced increase in transport activity was not modified by substrate starvation and not related to changes in the intracellular pool of amino acids. Glucagon did not modify system ASC activity measured by L -cysteine. Therefore the transport activity of AIB independent of system A stimulated by glucagon cannot be attributed to system ASC. This suggests a Na+-dependent transport system in rat hepatocytes not identified until now.  相似文献   

20.
Changes in neutral amino acid transport activity caused by addition of phytohaemagglutinin-P to quiescent peripheral pig lymphocytes have been evaluated by measurements of 14C-labelled neutral and analogue amino acids under conditions approaching initial entry rates. Utilizing methylaminoisobutyric acid, the best model substrate of System A, we confirmed our previous report (Borghetti, A.F., Kay, J.E. and Wheeler, K.P. (1979) Biochem. J. 182, 27–32) on the absence of this transport system in quiescent cells and its emergence following stimulation. Furthermore, we demonstrated the presence in quiescent cells of an Na+-dependent transport system for neutral amino acids that has been characterized as System ASC by several criteria including intolerance to methylaminoisobutyric acid, strict Na+-dependence, the property of transtimulation and specificity for pertinent substrates such as alanine, serine, cysteine and threonine. Analysis of the relationship between influx and substrate concentration revealed that two independent saturable components contribute to entry of alanine in quiescent cells: a low affinity (Km = ≈4 mM) and a high affinity (Km = ≈0.2 mM) component. The high affinity component could be inhibited in a competitive way by serine, cysteine and threonine, but methylaminoisobutyric acid did not change appreciably its constants. The enhanced activity of alanine transport through the ASC system observed in activated cells resulted from a large increase in the capacity (V) of the high affinity component without any substantial change in the apparent affinity constant (Km).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号