首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three observations indicated that the 2-megadalton chloramphenicol resistance plasmid pCM194 interferes with SP02 lysogeny of Bacillus subtilis. SP02 plaques formed on B. subtilis(pCM194) appeared almost clear, whereas plaques produced on plasmid-free or pUB110-containing cells contained large turbid centers. The number of phages spontaneously liberated by B. subtilis(SP02) was increased 10-fold or more when pCM194 was also present in the lysogens. Lastly, growth of B. subtilis(SP02, pCM194) for approximately 20 to 25 generations resulted in essentially complete loss of the prophage. This interference was not observed with pUB110 or pE194, and the pCM194 interference was not directed against B. subtilis temperate phage phi 105, which is unrelated to SP02. Lytic replication of SP02 appeared to be unaffected by pCM194. pCM194 interference with SP02 lysogeny was demonstrable in recombination-proficient strains and a recE mutant of B. subtilis. SP02 prophage which were noninducible due to the phage ind mutation were resistant to pCM194 interference. pCM194 interference was lost when the entire pCM194 molecule was joined at its unique HpaII site or at one of the two MboI sites to pUB110 or pUB110 derivatives. pBR322 joined to pCM194 at the same MboI site or at the HindIII site produced chimeras that retained the ability to interfere with SP02 lysogeny. A three-part plasmid constructed by joining pBR322 to pCM194 (at HindIII sites) and to pE194 (at PstI sites) was compatible with the SP02 prophage and showed a temperature-sensitive replication phenotype characteristic of the pE194 replicon. One explanation for the interference involves competition for a host component between an SP02 genome attempting to establish lysogeny and plasmids whose replication is directed by the pCM194 replicon.  相似文献   

2.
HindIII restriction endonuclease fragments of DNA from temperate Bacillus subtilis bacteriophage SP02 were cloned in B. subtilis by using the plasmid pC194. Three hybrid plasmids which permit growth of the mutant SP02 susL244 in suppressor-negative bacteria were isolated. SP02 gene L is thought to code for a DNA polymerase essential for autonomous replication of SP02 DNA. Extracts of bacteria carrying one of these hybrid plasmids, pC194-96, had 10- to 30-fold increased DNA polymerase activity. The plasmid-induced DNA polymerase activity differed from that of the known B. subtilis DNA polymerases in several respects. The results of the experiments support the idea that phage SP02 codes for a new DNA polymerase.  相似文献   

3.
Plasmid pPL1010 is a 7.0-kilobase derivative of plasmid pUB110 that harbors the cohesive end site of the bacteriophage SP02 genome. Plasmid pPL1017 is a 6.8-kilobase derivative of plasmid pC194 that contains the immunity region of bacteriophage phi 105 and the cohesive end site of bacteriophage SP02. These plasmids are transducible by bacteriophage SP02 at a frequency of 10(-2) transductants per PFU among mutant derivatives of Bacillus subtilis 168 and have been transferred to other strains of B. subtilis and B. amyloliquefaciens by means of bacteriophage SP02-mediated transduction, with frequencies ranging from 10(-5) to 10(-7) transductants per PFU. The introduced plasmids were stably maintained in nearly all new hosts in the absence of selective pressure. An exception was found in B. subtilis DSM704, which also harbored three cryptic plasmids. Plasmids pPL1010 and pPL1017 were incompatible with a 7.9-kilobase replicon native to strain DSM704. Furthermore, plasmid pPL1017 was processed by strain DSM704 into a approximately 5.3-kilobase replicon that was compatible with the resident plasmid content of strain DSM704. The use of bacteriophage SP02-mediated plasmid transduction has allowed the identification of Bacillus strains that are susceptible to bacteriophage SP02-mediated genetic transfer but cannot support bacteriophage SP02 lytic infection.  相似文献   

4.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

5.
Potentiation of a nucleolytic activity in Bacillus subtilis   总被引:1,自引:0,他引:1  
In several strains of Bacillus subtilis extensive breakdown of chromosomal DNA may be potentiated by osmotic lysis of protoplasts. At its most severe, in strains originating from Farmer & Rothman's thymine auxotroph, the rate of DNA breakdown was greater than 50% per hour at 40 degrees C. The rate of DNA breakdown in most other strains tested was approximately 5% per hour except for SP beta- strains, in which the rate of DNA breakdown was only 0.3%. DNA degradation was attributed to relaxation of control of a nuclease specified by the prophage of SP beta or a related phage. The most potent nuclease in lysates was an ATP-activated protein of Mr 280 000. Derivatives of Farmer and Rothman's strain containing integrated plasmids had the highest rate of DNA degradation. Although the chromosome was completely destroyed, covalently closed circular plasmids were generated from the integrated sequence. These showed massive deletions of the B. subtilis part of the integrated plasmid but the vector sequence remained intact. The nucleolytic activity therefore appears to recognize specific sequences in B. subtilis DNA. We suggest that activation of SP beta genes during development of competence may be a cause of deletion of cloned genes in the early stages of establishment of cloned sequences.  相似文献   

6.
Bacillus thuringiensis serovar israelensis , an entomopathogen for mosquito larvae, was demonstrated to be lysogenized by temperate phage SU-11 whose genome was located extrachromosomally in the cell. The prophage SU-11 was cured at high frequency from the parental strain by continuous sub-culture at high temperature, but the ability to produce δ-endotoxin remained in the prophage cured strain. Moreover, phage induction was found to occur after mating of serovar israelensis with its prophage cured strain, as well as with B. thuringiensis serovar thuringiensis , B. cereus and B. subtilis .  相似文献   

7.
Mutational inactivation of both nonA and nonB genes are required for the permissiveness of Bacillus subtilis Marburg cells to infection by phage SP10. By transformational analysis of the nonA strain with DNAs from gently lysed protoplasts carrying the integrative plasmid pMUTIN (em) insertions in every 20 kb along the whole chromosome, we have identified the nonA to be the cured state of endogenous prophage SPbeta. Direct DNA sequencing, on the other hand, revealed one nonsense mutation of nonB in ydiR, which is a component gene of the intrinsic restriction system BsuMR of B.subtilis Marburg. Introduction of the wild type ydiR into the nonB strain at aprE locus resulted in complementation of nonB. Furthermore, as the SP10 genome was found to possess multiple BsuM target sites, it is considered that SP10 can infect and multiply in B.subtilis cells, which are SPbeta free and possess a defective BsuMR restriction system.  相似文献   

8.
9.
The Bacillus subtilis temperate bacteriophages phi 105 and SP02 are incapable of transduction of the small, multicopy drug resistance plasmids pUB110 and pCM194. Cloning endonuclease-generated fragments of phi 105 or SP02 DNA into each of the plasmids renders the chimeric derivatives susceptible to transduction specifically by the phage whose deoxyribonucleic acid is present in the chimera. The majority of phage deoxyribonucleic acid fragments identified that render plasmids transducible by phi 105 or SP02 appear to be internal fragments, not fragments containing the cohesive ends. However, the highest overall transduction frequency was observed in SP02-mediated transduction of a derivative of pUB110 containing a 1.6-megadalton EcoRI fragment that likely contains the SP02 cohesive ends (plasmid pPL1010). The transducing activity present in a phi 105 transducing lysate had a buoyant density slightly greater than infectious particles, whereas the majority of transducing particles in an SP02(pPL1010) transducing lysate had a buoyant density slightly less than infectious particles. Although no detectable change in plasmid structure resulted from transduction by phi 105 or SP02, deoxyribonucleic acid isolated from a purified SP02(pPL1010) transducing lysate contained no detectable monomeric pPL1010, but did contain a form of pPL1010 of higher molecular weight than the monomer.  相似文献   

10.
Dominance Relationships in Mixedly Infected Bacillus subtilis   总被引:16,自引:11,他引:5       下载免费PDF全文
The progeny released from Bacillus subtilis cells mixedly infected with bacteriophages beta22, SP82, and SP02(c1) have been studied at varying multiplicities of infection and orders of addition and with different host strains of the bacterium. In B. subtilis 168, SP02(c1) was subordinate to both SP82 and beta22 and did not yield significant numbers of progeny even when added 5 min before the superior phage. Dominance in mixed infections of beta22 and SP82 was host-dependent. In B. subtilis 168, SP82 was dominant and greatly reduced the yield of beta22 if added simultaneously or before the subordinate partner. However, in the same mixed infection in B. subtilis SB11, beta22 was the dominant phage and totally suppressed the production of SP82 even when added 5 min after the latter.  相似文献   

11.
From a library of Bacillus subtilis DNA cloned with the Escherichia coli cosmid vector pHC79, 85 recombinant cosmids containing DNA from near the replication terminus, terC, were identified. The DNA inserts of these cosmids were confined to three regions of a 350-kilobase segment of the chromosome extending from the left end of the SP beta prophage to approximately 75 kilobases on the right of terC. All B. subtilis genes known to reside in this segment, as well as the portion of the SP beta prophage that is expressed early in the lytic cycle of the phage, appeared to be absent from the library. A region of SP beta homology distinct from the prophage and just to the left of terC was identified.  相似文献   

12.
The low transformation efficiency of Bacillus subtilis 168 lysogenic for phages ?105 or SPO2 is shown to result from the induction of lytic phage replication in competent cells. Lysogenic competent cells have a higher rate of spontaneous prophage induction than noncompetent cells. Mutants of ?105 and SPO2 which form lysogens resistant to spontaneous induction were isolated, and these lysogens exhibited higher transformation levels than those formed by wild-type phage. These results suggest that the physiological state of competence in B. subtilis promotes prophage derepression leading to cell death and the loss of potential transformants.  相似文献   

13.
Virulent bacteriophage phi 1 grows on a variety of Bacillus subtilis strains, mutants of this virus which abortively infect the transformable bacillus. B. subtilis 168, while retaining the ability to productively infect related bacteria have been found. In the present study, we demonstrate that the inability of one such variant, phi 1m, to develop normally in strain 168 is mediated by cryptic prophage SP beta. The latter is a temperate bacteriophage which is carried by B. subtilis 168 and most strains derived from this bacterium. Phi 1 m infection of SP beta lysogens begins with apparently normal adsorption, penetration, and inititaion of virus-directed syntheses. At about the 20th min of the latent period, however, there is an abrupt cessation of nucleic acid synthesis and cellular respiration, accompanied by a change in cell permeability. This course of events can be altered to a permissive infection by mutation in the mpi gene of SP beta, by mutation in the spoOA gene of the host, or by growing SP beta lysogens at high temperature. In addition, we found a second class of phi 1 mutants which abortively infect B. subtilis 168 derivatives even in the absence of the SP beta prophage.  相似文献   

14.
Chromosomal organization in related temperate Bacillus subtilis bacteriophages SP beta, phi 3T, rho 11, Z, and E was compared. DNA-DNA hybridization studies done in conjunction with available restriction fragment maps of SP beta, phi 3T, and rho 11 demonstrated that DNA homology between these three phages extended over most of their respective genomes, although each contained unique chromosomal segments, phi 3T, rho 11, Z, and E, but not SP beta, possessed apparently homologous structural genes (thyP) for thymidylate synthetase. DNA from all thyP-containing phages transformed thymine auxotrophs of B. subtilis SP beta lysogens to prototrophy. This transformation commonly involved incorporation of the thyP gene into SP beta prophage within a region corresponding to the middle of the viral chromosome. Chimeric plasmids containing the thyP gene from phi 3T or cloned fragments of SP beta DNA were used in DNA-DNA hybridization studies to locate the thymidylate synthetase gene near the center of the phi 3T chromosome, and to demonstrate that the organization of this region resembled the analogous portion of the SP beta genome. Profiles of virion structural proteins from the five phages were also very similar, further suggesting functional homology between these viruses. However, despite these evidences of relatedness, populations of fragments generated by digesting SP beta, phi 3T, rho 11, Z, and E DNA with restriction enzymes were quite dissimilar.  相似文献   

15.
Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis   总被引:14,自引:0,他引:14  
W M de Vos  S C de Vries  G Venema 《Gene》1983,25(2-3):301-308
By means of homopolymer dG-dC tailing, using PstI linearized pBR327 as vector, we constructed small plasmids containing the entire Escherichia coli recA gene. The 1.8-kb inserts were recloned in the Bacillus subtilis expression vector pPL608 in a B. subtilis recE4 strain. Analysis of plasmid-coded proteins showed expression of the E. coli recA gene both in minicells and whole cells of B. subtilis. Expression was under control of the bacteriophage SP02 promoter, which is part of pPL608. A recA-expressing plasmid completely abolished the transformation deficiency of the recE4 mutant as well as its sensitivity to mitomycin C (MC). The expressed recA gene also restored recombination in other B. subtilis strains lacking the recE gene product. These results indicate a high similarity between the functions of the E. coli RecA and B. subtilis RecE proteins.  相似文献   

16.
The effect of structural peculiarities of DNAs from integrative plasmids on the transformation activity was studied. Monomeric forms of the plasmids can only transform B. subtilis competent cells, when plasmid selective marker is inserted into chromosomal fragment within the plasmid. Polymeric forms are needed for efficient transformation. Both single- and double-stranded DNAs of integrative plasmids transform no B.subtilis protoplasts, this being irrespective of plasmid structure.  相似文献   

17.
A total of 75 strains (including 5 reference strains) of Bacillus amyloliquefaciens, B. cereus, B. circulans, B. licheniformis, B. megaterium, B. pumilus, B. sphaericus, B. subtilis, and B. thuringiensis and 36 species-unidentified Bacillus strains were surveyed for plasmids by cesium chloride-ethidium bromide equilibrium centrifugation of cell lysates in a study of antibiotic resistance in host cells. Of the 111 strains, 13 (including 3 reference strains) were found to harbor plasmids, and 5 of the 13 showed antibiotic resistance. This antibiotic resistance appeared not to be due to the plasmids, however, because the trait was not cured by cultivation of cells in nutrient medium containing ethidium bromide (1 mug/ml), sodium dodecyl sulfate (0.2 mug/ml), or novobiocin (1 mug/ml), except in one strain, in which kanamycin and streptomycin resistances were cured by novobiocin. One strain of B. amyloliquefaciens, S294, was found to harbor a plasmid, pFTB14, which differed from the plasmid species of classes 1 to 6 in B. subtilis and B. amyloliquefaciens, as determined by restriction analysis and DNA contour length determination. However, in DNA-DNA hybridization on a filter after Southern blotting from an agarose gel, the pFTB14 DNA hybridized with plasmids of classes 1 to 5. Three strains of B. thuringiensis each carried at least 4 to 11 plasmid species, whereas no plasmids were detected in four strains of B. cereus, which, in relation to B. thuringiensis, is closely related taxonomically and has highly homologous DNA sequences. The plasmid DNAs prepared from species other than B. subtilis and B. amyloliquefaciens did not hybridize with that of pFTB14.  相似文献   

18.
Thymine auxotrophs of Bacillus subtilis strains lysogenic for temperate bacteriophage SP beta c2 were transformed to prototrophy by DNA from related phage phi 3T. During transformation, the phi 3T-encoded thymidylate synthetase gene, thyP3, became integrated into the extreme right end of the SP beta c2 prophage near the bacterial citK gene. Upon heat induction, the transformed B. subtilis cells released SP beta c2T phages that could lysogenize thymine auxotrophs and convert them to prototrophy. Comparison of restriction endonuclease fragments of DNAs from SP beta c2 and SP beta c2T phages revealed that the latter contained a large region of deletion and substitution near the center of the chromosome. This region included the phage attachment site on the SP beta c2 genome.  相似文献   

19.
Bacillus subtilis competent cells harboring plasmid pUB110 were transformed by plasmids unable to replicate in this host but carrying segments of pUB110, 260 to 4500 bp long. Recombinants between the incoming and the resident plasmids were found in the transformed cells. Transforming efficiency of the incoming plasmids depended strongly on their molecular form and the length of their region homologous with the resident plasmid. It increased with the fourth to fifth power of that length for monomers having at least 900 bp of homology. Activity of monomers having less than 900 bp homology was too low to be measured in our experiments. Transforming efficiency of dimers was much greater than that of monomers, and varied with the square of the length of the homologous region. These results indicate that dimeric and monomeric plasmid molecules are processed differently during transformation of B. subtilis competent cells.  相似文献   

20.
Lysogenic strains of Bacillus subtilis 168 were reduced in their level of transformation as compared to non-lysogenic strains. The level of transformation decreased even further if the competent lysogenic cells were allowed to incubate in growth media prior to selection on minimal agar. This reduction in the frequency of transformation was attributable to the selective elimination of transformed lysogenic cells from the competent population. Concurrent with the decrease in the number of transformants from a lysogenic competent population was the release of bacteriophage by these cells. The lysogenic bacteria demonstrated this dramatic release of bacteriophage only if the cells were grown to competence. Both the selective elimination of transformed lysogens and the induction of prophage was prevented by the inhibition of protein synthesis. Additionally, competent lysogenic cells released significantly higher amounts of exogenous donor transforming deoxyribonucleic acid than did competent non-lysogenic cells or competent lysogenic cells incubated with erythromycin. These data establish that the induction of the prophage from the competent lysogenic cells was responsible for the selective elmination of the lysogenic transformants. A model is presented that accounts for the induction of the prophage from competent lysogenic bacteria via the induction of a repair system. It is postulated that a repair system is induced or derepressed by the accumulation of gaps in the chromosomes of competent bacteria. This hypothetical enzyme(s) is ultimately responsible for the induction of the prophage and the selective elimination of transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号