首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The interactions of protein components of the xenobiotic-metabolizing cytochrome P450 system, CYP6A1, P450 reductase, and cytochrome b5 from the house fly (Musca domestica) have been characterized. CYP6A1 activity is determined by the concentration of the CYP6A1-P450 reductase complex, regardless of which protein is present in excess. Both holo- and apo-b5 stimulated CYP6A1 heptachlor epoxidase and steroid hydroxylase activities and influenced the regioselectivity of testosterone hydroxylation. The conversion of CYP6A1 to its P420 form was decreased by the addition of apo-b5. The effects of cytochrome b5 may involve allosteric modification of the P450 enzyme that modify the conformation of the active site. The overall stoichiometry of the P450 reaction was substrate-dependent. High uncoupling of CYP6A1 was observed with generation of hydrogen peroxide, in excess over the concomitant testosterone hydroxylation or heptachlor epoxidation. Inclusion of cytochrome b5 in the reconstituted system improved efficiency of oxygen consumption and electron utilization from NADPH, or coupling of the P450 reaction. Depending on the reconstitution conditions, coupling efficiency varied from 8 to 25% for heptachlor epoxidation, and from 11 to 70% for testosterone hydroxylation. Because CYP6A1 is a P450 involved in insecticide resistance, this suggests that xenobiotic metabolism by constitutively overexpressed P450s may be linked to significant oxidative stress in the cell that may carry a fitness cost.  相似文献   

2.
Cytochrome P450s (P450) form a superfamily of membrane-bound proteins that play a key role in the primary metabolism of both xenobiotics and endogenous compounds such as drugs and hormones, respectively. To be enzymically active, they require the presence of a second membrane-bound protein, NADPH P450 reductase, which transfers electrons from NADPH to the P450. Because of the diversity of P450 enzymes, much of the work on individual forms has been carried out on purified proteins, in vitro, which requires the use of complex reconstitution mixtures to allow the P450 to associate correctly with the NADPH P450 reductase. There is strong evidence from such reconstitution experiments that, when cytochrome b5 is included, the turnover of some substrates with certain P450s is increased. Here we demonstrate that allowing human P450 reductase, CYP3A4, and cytochrome b5 to associate in an in vivo-like system, by coexpressing all three proteins together in Escherichia coli for the first time, the turnover of both nifedipine and testosterone by CYP3A4 is increased in the presence of cytochrome b5. The turnover of testosterone was increased by 166% in whole cells and by 167% in preparations of bacterial membranes. The coexpression of cytochrome b5 also resulted in the stabilization of the P450 during substrate turnover in whole E. coli, with 109% of spectrally active CYP3A4 remaining in cells after 30 min in the presence of cytochrome b5 compared with 43% of the original P450 remaining in cells in the absence of cytochrome b5.  相似文献   

3.
Cloning and characterization of the rat cytochrome P450 4F5 (CYP4F5) gene   总被引:1,自引:0,他引:1  
Cui X  Strobel HW 《Gene》2002,300(1-2):179-187
The analysis of a non-redundant set of human proteins, for which both the crystallographic structures and the corresponding gene sequences are available, show that bases at third codon position are non-uniformly distributed along the coding sequences. Significant compositional differences are found by comparing the gene regions corresponding to the different secondary structures of the proteins. Inter-and intra-structure differences were most pronounced in the GC-richest genes. These results are not compatible with any proposed hypotheses based on a neutral process of formation/maintenance of the high GC3 levels of the genes localized in the GC-richest isochores of the human genome.  相似文献   

4.
Metmyoglobin (metMb) reduction by metMb reductase from heart muscle requires cytochrome b5 as electron-transfer mediator. The existence of a metMb-ferrous cytochrome b5 complex is demonstrated by mutual perturbation of the proteins' respective electrophoretic titration curves between pH 4 and 7. The same technique shows a preferential binding of cytochrome b5 over metMb by the enzyme. The paramagnetic hyperfine shifts in the cytochrome b5 1H NMR spectrum are perturbed by metMb, indicating the formation of a specific bimolecular complex with a 1:1 stoichiometry and a binding constant estimated to be less than 10 microM. The resonances assigned to the cytochrome b5 heme 6-propionate methylene group exhibit the largest complexation shifts. Computer modeling implicates lysines 47, 50, and 98 of metMb as contact points with cytochrome b5 carboxylate residues 43, 44, 60, and heme 6-propionate. The mechanism of the enzymatic reduction establishes metMb reductase as an NADH-cytochrome b5 oxidoreductase. Cytochrome b5 is reduced at near diffusion-controlled rates by the enzyme with a turnover number of 1000 min-1 X Km for the cytochrome is 0.9 microM versus 100 microM reported for the erythrocyte enzyme. Ferrous cytochrome b5 then reduces metMb nonenzymatically with an apparent rate constant of 4.9 X 10(4) M-1 min-1 X Acetylation of metMb, which does not affect its oxygen affinity or chemical reduction, renders it a poor substrate for enzymatic reduction. This study suggests a function for the three exterior lysine residues conserved in all mammalian myoglobin sequences: they are contact points for complexation with cytochrome b5.  相似文献   

5.
Cytochromes P450 of the 4A family metabolize a variety of fatty acids, prostaglandins, and eicosanoids mainly at the terminal carbon (omega-hydroxylation) and, to a lesser extent, at the penultimate carbon [(omega-1)-hydroxylation]. In the present study, cytochrome P4504A5 (4A5) has been successfully expressed in Escherichia coli, with an average yield of enzyme of approximately 80 nmol/liter of cells. Spectroscopic characterization of the purified enzyme, using electron paramagnetic resonance and absolute and substrate-perturbed optical difference spectroscopy, showed that the heme of resting 4A5 is primarily low spin, but is converted primarily to high spin by substrate binding. The kcat and Km values for laurate omega-hydroxylation were 41 min-1 and 8.5 microM, respectively, in the absence of cytochrome b5, and 138 min-1 and 38 microM, respectively, in the presence of cytochrome b5. Hydroxylation of palmitate was dependent on the presence of cytochrome b5; kcat and Km values were 48 min-1 and 122 microM, respectively. Hydroxylation of arachidonic acid was barely detectable and was unchanged by the addition of cytochrome b5.  相似文献   

6.
7.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

8.
With CYP2E1 in vitro both the first and the second electron of the catalytic cycle can come from cytochrome b(5) via either NADPH-cytochrome P450 reductase or NADH-cytochrome b(5) reductase, and the presence of cytochrome b(5) stimulates CYP2E1 turnover both in vitro and in vivo. To determine whether electron input via the NADH-dependent pathway was similarly functional in whole cells and necessary for the stimulation by cytochrome b(5), we constructed five plasmids designed to express human CYP2E1 in various combinations with cytochrome b(5) reductase, cytochrome b(5), and cytochrome P450 reductase. CYP2E1 activity in Salmonella typhimurium cells transformed with each plasmid was assessed by mutagenic reversion frequency in the presence of dimethylnitrosamine. A fivefold increase in reversion frequency when cytochrome b(5) was coexpressed with P450 reductase was abolished by disruption of heme-binding in cytochrome b(5) by site-directed mutagenesis (His68Ala), suggesting that electron transfer to cytochrome b(5) was necessary for the stimulation. Addition of cytochrome b(5) reductase to the cytochrome b(5)/P450 reductase coexpression plasmid did not further increase the stimulation by cytochrome b(5), but b(5) reductase could support CYP2E1 activity in the absence of P450 reductase at a level equivalent to that obtained with just CYP2E1 and P450 reductase. Neither cytochrome b(5) reductase nor cytochrome b(5) alone could support CYP2E1 activity. These results demonstrate that the cytochrome b(5) reductase/cytochrome b(5) pathway can support CYP2E1 activity in bacterial cells.  相似文献   

9.
The metabolism of pyrene to hydroxypyrene by CYP3A4 was investigated to determine the effect of cytochrome b5 (b5) on turnover kinetics. In the absence of b5, formation of hydroxypyrene in in vitro incubations showed a biphasic substrate-velocity curve where K(m1) and V(max1) were 1.3 microM and 0.5 pmol/min/pmol P450, respectively. The addition of testosterone to the incubation mixture completely abolished the second phase to yield a typical, hyperbolic curve, presumably through the disruption in the formation of a pi-pi stacked pyrene complex within the CYP3A4 active site. Finally, the addition of b5 yielded an increase hydroxypyrene formation that resulted in a sigmoidal substrate velocity curve. The V(max) was 15.7 pmol/min/pmol P450, the K(m) was 7.5 microM, and the Hill coefficient was greater than two. This demonstrated that b5 could directly induce positive cooperativity on CYP3A4 and that this biological factor needs to be carefully considered when included in in vitro P450 reactions.  相似文献   

10.
Inui H  Maeda A  Ohkawa H 《Biochemistry》2007,46(35):10213-10221
Microsomal cytochrome P450 3A4 (CYP3A4) catalyzes monooxygenase reactions toward a diverse group of exogenous and endogenous substrates and requires cytochrome b5 (b5) in the oxidation of the typical substrate testosterone. To analyze the molecular interaction among CYP3A4, NADPH-cytochrome P450 oxidoreductase (P450 reductase), and b5, we constructed several fused enzyme genes and expressed them in Saccharomyces cerevisiae. The recombinant fused enzymes CYP3A4-truncated (t)-P450 reductase-t-b5 (3RB) and CYP3A4-t-b5-t-P450 reductase (3BR) in yeast microsomes showed a higher specific activity in 6beta-hydroxylation of testosterone than did the reconstitution premixes of CYP3A4, P450 reductase, and b5. The purified fused enzymes exhibited lower Km values and substantially increased Vmax values in 6beta-hydroxylation of testosterone and oxidation of nifedipine. Moreover, the fused enzymes showed significantly higher activities in cytochrome c reduction than the reconstitution premixes. Although the affinity of 3RB toward cytochrome c was twice as high as that of 3BR, 3BR and 3RB showed nearly the same affinity toward NADPH/NADH. In addition, the heme of the CYP3A4 moiety of 3RB was reduced preferentially and more rapidly than that of 3BR, whereas the heme of the b5 moiety of 3BR was selectively reduced compared with that of 3RB. These results suggest that the conformation of the 3RB molecule was the most suitable for high activity because of appropriate ordering of the CYP3A4, P450 reductase, and b5 moieties for efficient electron flow. Thus, we believe that the b5 moiety plays an important role in the efficient transfer of the second electron in the vicinity of the CYP3A4 moiety.  相似文献   

11.
Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5α-androst-16-en-3-one (5α-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-β synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17α-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-β synthase as well as the 17α-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17α-hydroxylase (p < 0.013), a transient increase in C17,20 lyase, and an increase in andien-β synthase activity (p < 0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17α-hydroxylase, but did not affect the andien-β synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-β synthase activity of CYP17A1.  相似文献   

12.
A cDNA clone specific for cytochrome b5 was isolated from Helicoverpa armigera. This sequence corresponded to a mRNA of an estimated 544 nucleotides in length excluding the poly A tail. The mRNA contained an open reading frame of 381 nucleotides encoding a protein of 127 amino acid residues with a molecular weight of 14,564 Daltons. The encoded protein sequence showed 51% protein sequence identity with cytochrome b5 from M. domestica and 36-37% identity with mammalian and avian cytochrome b5 sequences. Northern analysis of larval RNA using this cDNA as probe, revealed that cytochrome b5 mRNA expression is tissue specific with the mRNAs being expressed in abundance in the midguts of larvae, at a lower level in fatbody but is not detectable in larval integument. During normal development this mRNA was undetectable in eggs but was present at similar levels from first to fifth instar larvae. The mRNA was expressed at very low levels in pupae and adult moths. The cytochrome b5 mRNA was found to be inducible by treatment with the monoterpene, a-pinene, and to be over-expressed in some individuals of a pyrethroid resistant population of H. armigera. The induction and over-expression patterns were identical to the cytochrome P450, CYP6B7 mRNA. The present data suggests that cytochrome b5 may be involved in CYP6B7 mediated pyrethroid resistance in H. armigera.  相似文献   

13.
Cytochrome P450 monooxygenases are involved in insecticide resistance in insects. We previously observed an increase in CYP6P7 and CYP6AA3 mRNA expression in Anopheles minimus mosquitoes during the selection for deltamethrin resistance in the laboratory. CYP6AA3 has been shown to metabolize deltamethrin, while no information is known for CYP6P7. In this study, CYP6P7 was heterologously expressed in the Spodoptera frugiperda (Sf9) insect cells via baculovirus‐mediated expression system. The expressed CYP6P7 protein was used for exploitation of its enzymatic activity against insecticides after reconstitution with the An. minimus NADPH‐cytochrome P450 reductase enzyme in vitro. The ability of CYP6P7 to metabolize pyrethroids and insecticides in the organophosphate and carbamate groups was compared with CYP6AA3. The results revealed that both CYP6P7 and CYP6AA3 proteins could metabolize permethrin, cypermethrin, and deltamethrin pyrethroid insecticides, but showed the absence of activity against bioallethrin (pyrethroid), chlorpyrifos (organophosphate), and propoxur (carbamate). CYP6P7 had limited capacity in metabolizing λ‐cyhalothrin (pyrethroid), while CYP6AA3 displayed activity toward λ‐cyhalothrin. Kinetic properties suggested that CYP6AA3 had higher efficiency in metabolizing type I than type II pyrethroids, while catalytic efficiency of CYP6P7 toward both types was not significantly different. Their kinetic parameters in insecticide metabolism and preliminary inhibition studies by test compounds in the flavonoid, furanocoumarin, and methylenedioxyphenyl groups elucidated that CYP6P7 had different enzyme properties compared with CYP6AA3. © 2011 Wiley Periodicals, Inc.  相似文献   

14.
The effects of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase were studied with the proteinase-solubilized enzymes. Cytochrome b5 reduction by NADH:cytochrome b5 reductase was strongly inhibited by CaCl2 or MgCl2. When 1.2 microM-cytochrome b5 was used, the concentrations of CaCl2 and MgCl2 required for 50% inhibition (I50) were 8 and 18 mM respectively. The inhibition was competitive with respect to cytochrome b5. The extent of inhibition by CaCl2 or MgCl2 was much higher than that by KCl or other alkali halides. In contrast, cytochrome b5 reduction by NADPH:cytochrome c reductase was extremely activated by CaCl2 or MgCl2. In the presence of 5 mM-CaCl2, the activity was 24-fold higher than control when 4.4 microM-cytochrome b5 was used. The magnitude of activation by CaCl2 was 2-3-fold higher than that by MgCl2. The activation by these salts was much higher than that by KCl, indicating that bivalent cations play an important role in this activation. The mechanisms of inhibition and activation by bivalent cations of cytochrome b5 reduction by these two microsomal reductases are discussed.  相似文献   

15.
1. The reactions of cytochrome omicron in intact cells of aerobically grown Escherichia coli with O2 and CO have been studied at low temperature. 2. Flash photolysis of CO-liganded cells in the presence of O2 and at temperatures between -79 and -102 degrees C results in the oxidation of kinetically heterogeneous beta-type cytochromes (including cytochrome omicron), but not of cytochrome d. 3. The reaction of reduced cytochrome omicron with O2 involves O2 binding to give intermediate(s) with spectral characteristics similar to that of the reduced oxidase-CO complex. Observation in the alpha-region suggests that unexplained ligand dissociation accompanies the initial O2 binding. 4. At temperatures below -98 degrees C, an 'end point' in the reaction is reached; further reaction and oxidation of cytochrome omicron occurs on raising the temperature. 5. There is a linear relationship between the rate of formation of the oxygen compound and the O2 concentration up to 0.5 mM. The second-order constant for its formation (k+1) is 0.91 M-1.S-1 at -101 degrees C. The reaction is not readily reversible, the value of k-1 being 1.4 X 10(-5) S-1 and the kd 1.5 X 10(-5) M. 6. The energy of activation for this reaction at low temperatures is 29.9kJ (7.1 kcal)/mol. 7. The reaction with O2 is distinguished from that with CO by the markedly lower velocity and high photolytic reversibility of the latter. 8. Comparisons are drawn between the intermediate(s) in the O2 reaction of cytochrome omicron in E. coli and those identified in other bacteria and in the reaction of cytochrome aa3 with O2.  相似文献   

16.
Age-dependent decrease in cytochrome b5 was observed in erythrocytes from both a normal person and a patient with hereditary methaemoglobinaemia without neurological symptoms. With aging, concentrations of cytochrome b5 in erythrocytes from the patient were almost the same as those in the control. Age-dependent decrease in cytochrome b5 reductase activity in the control erythrocytes was also shown; however, the reductase activity was very low in erythrocytes from the patient over the whole age range. Our studies show that methaemoglobin content of erythrocytes seems to be dependent on the content of cytochrome b5 in the cells, both in the control subject and in the patient.  相似文献   

17.
18.
Some spectra of Pseudomonas cytochrome oxidase are reported, both for comparison with those of other workers and to illustrate the differences between the ascorbate- and dithionite-reduced forms of the enzyme. A spectrum of the reduced enzyme-CO complex, prepared in the absence of added reductants by incubation under CO, is also included. Ultracentrifugation studies yielded a value for the sedimentation coefficient (s20,w) of 7.5S, and an isoelectric point of pH6.9 was determined by isoelectric focusing. Steady-state kinetic constants of the electron donors, quinol, sodium ascorbate, reduced Pseudomonas azurin and Pseudomonas ferrocytochrome c551 were investigated giving Km values of 30mM, 4mM, 49muM and 5.6muM respectively. The two protein substrates were observed to be subject to product inhibition and the Ki for oxidized Pseudomonas azurin was evaluated at 4.9muM. Steady-state kinetics were also used to investigate the effects of the oxidation products of dithionite on the oxidase and nitrite reductase activities of Pseudomonas cytochrome oxidase. These experiments showed that whereas the oxidase activity was inhibited, the nitrite reductase activity was slightly enhanced.  相似文献   

19.
20.
Marohnic CC  Bewley MC  Barber MJ 《Biochemistry》2003,42(38):11170-11182
Microsomal cytochrome b(5) reductase (EC 1.6.2.2) catalyzes the reduction of ferricytochrome b(5) using NADH as the physiological electron donor. Site-directed mutagenesis has been used to engineer the soluble rat cytochrome b(5) reductase diaphorase domain to utilize NADPH as the preferred electron donor. Single and double mutations at residues D239 and F251 were made in a recombinant expression system that corresponded to D239E, S and T, F251R, and Y, D239S/F251R, D239S/F251Y, and D239T/F251R, respectively. Steady-state turnover measurements indicated that D239S/F251Y was bispecific while D239T, D239S/F251R, and D239T/F251R were each NADPH-specific. Wild-type (WT) cytochrome b(5) reductase showed a 3700-fold preference for NADH whereas the mutant with the highest NADPH efficiency, D239T, showed an 11-fold preference for NADPH, a 39200-fold increase. Wild-type cytochrome b(5) reductase only formed a stable charge-transfer complex with NADH while D239T formed complexes with both NADH and NADPH. The rates of hydride ion transfer, determined by stopped-flow kinetics, were k(NADH-WT) = 130 s(-1), k(NADPH-WT) = 5 s(-1), k(NADH-D239T) = 180 s(-1), and k(NADPH-D239T) = 73 s(-1). K(s) determinations by differential spectroscopy demonstrated that D239T could bind nonreducing pyridine nucleotides with a phosphate or a hydroxyl substituent at the 2' position, whereas wild-type cytochrome b(5) reductase would only bind 2' hydroxylated molecules. Oxidation-reduction potentials (E degrees ', n = 2) for the flavin cofactor were WT = -268 mV, D239T = -272 mV, WT+NAD(+) = -190 mV, D239T+NAD(+) = -206 mV, WT+NADP(+) = -253 mV, and D239T+NADP(+) = -215 mV, which demonstrated the thermodynamic contribution of NADP(+) binding to D239T. The crystal structures of D239T and D239T in complex with NAD(+) indicated that the loss of the negative electrostatic surface that precluded 2' phosphate binding in the wild-type enzyme was primarily responsible for the observed improvement in the use of NADPH by the D239T mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号