首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.  相似文献   

2.
An arginine esterase (FT1) was purified from B. arietans venom by gel-filtration and ion-exchange chromatography. The purified enzyme contains 21.6% of carbohydrate, 240 amino acids including 12 half-cystine residues and has a mol. wt of approximately 43,000. The purified enzyme has a high esterolytic activity towards N-alpha-benzoyl-L-arginine ethyl ester but shows no proteolytic activity against Azocoll and no clotting activity with fibrinogen. The N-terminal sequence of the arginine esterase from B. arietans venom shares a significant degree of sequence homology with the arginine esterase of B. nasicornis, the thrombin-like enzyme of C. adamanteus and the kallikrein-like enzymes of C. atrox venoms. It would appear that the arginine esterase from B. arietans venom exists in various multiple forms of the enzyme.  相似文献   

3.
Acinetobacter venetians V28 was isolated from the intestine of righteye flounder, Poecilopsetta plinthus caught in Vietnam seawater, and the esterase gene was cloned using a shotgun method. The amino acid sequence deduced from the nucleotide sequence (1,017 bp) corresponded to a protein of 338 amino acid residues with a molecular weight of 37,186. The esterase had 87% and 72% identities with the lipases of A. junii SH205 and A. calcoaceticus RUH2202, respectively. The esterase contained a putative leader sequence, as well as the conserved catalytic triad (Ser, His, Asp), consensus pentapeptide GXSXG, and oxyanion hole sequence (HG). The protein from the strain V28 was produced in both a soluble and an insoluble form when the Escherichia coli cells harboring the gene were cultured at 18 degrees C. The maximal activity of the purified enzyme was observed at a temperature of 40 degrees C and pH 9.0 using p-NP-caprylate as substrate; however, relative activity still reached to 70% even at 5 degrees C with an activation energy of 3.36 kcal/mol, which indicated that it was a cold-adapted enzyme. The enzyme was a nonmetalloprotein and was active against p-nitrophenyl esters of C4, C8, and C14. Remarkably, this enzyme retained much of its activity in the presence of commercial detergents and organic solvents. This cold-adapted esterase will be applicable as catalysts for reaction in the presence of organic solvents and detergents.  相似文献   

4.
An acetylxylan esterase from Thermobifida fusca NTU22 was purified 51-fold as measured by specific activity from crude culture filtrate by ultrafiltration concentration, Sepharose CL-6B and DEAE-Sepharose CL-6B column chromatography. The overall yield of the purified enzyme was 14.4%. The purified enzyme gave an apparent single protein band on an SDS-PAGE. The molecular mass of purified enzyme as estimated by SDS-PAGE and by gel filtration on Sepharose CL-6B was found to be 30 and 28kDa, respectively, indicating that the acetylxylan esterase from T. fusca NTU22 is a monomer. The pI value of the purified enzyme was estimated to be 6.55 by isoelectric focusing gel electrophoresis. The N-terminal amino acid sequence of the purified esterase was ANPYERGP. The optimum pH and temperature for the purified enzyme were 8.0 and 80°C, respectively. The Zn(2+), Hg(2+), PMSF and DIPF inhibited the enzyme activity. The K(m) value for p-nitrophenyl acetate and acetylxylan were 1.86μM and 0.15%, respectively. Co-operative enzymatic degradation of oat-spelt xylan by purified acetylxylan esterase and xylanase significantly increased the acetic acid liberation compared to the acetylxylan esterase action alone.  相似文献   

5.
A psychrotrophic bacterium producing a cold-adapted esterase upon growth at low temperatures was isolated from the alimentary tract of Antarctic krill Euphasia superba Dana, and classified as Pseudoalteromonas sp. strain 643A. A genomic DNA library of strain 643A was introduced into Escherichia coli TOP10F', and screening on tributyrin-containing agar plates led to the isolation of esterase gene. The esterase gene (estA, 621 bp) encoded a protein (EstA) of 207 amino acid residues with molecular mass of 23,036 Da. Analysis of the amino acid sequence of EstA suggests that it is a member of the GDSL-lipolytic enzymes family. The purification and characterization of native EstA esterase were performed. The enzyme displayed 20-50% of maximum activity at 0-20 degrees C. The optimal temperature for EstA was 35 degrees C. EstA was stable between pH 9 and 11.5. The enzyme showed activity for esters of short- to medium-chain (C(4) and C(10)) fatty acids, and exhibited no activity for long-chain fatty acid esters like that of palmitate and stearate. EstA was strongly inhibited by phenylmethylsulfonyl fluoride, 2-mercaptoethanol, dithiothreitol and glutathione. Addition of selected divalent ions e.g. Mg(2+), Co(2+) and Cu(2+) led to the reduction of enzymatic activity and the enzyme was slightly activated ( approximately 30%) by Ca(2+) ions.  相似文献   

6.
An isolated strain of Bacillus subtilis identified by 16S rDNA sequence analysis produces an enantioselective ester hydrolase. Whole cells of B. subtilis (RRL BB1) and enzyme derived from it was capable of enantioselective hydrolysis of several racemates including drug intermediates with moderate to high enantioselectivity as already reported by us. In this communication, we describe cloning of the gene encoding the enantioselective esterase designated as estBB1. The primary structure of the enzyme determined from the nucleotide sequence indicated that esterase estBB1 has Mw approximately 52kDa and pI approximately 5.2 and belongs to the family of type B carboxylesterases with 50-60% similarity at amino acid level. Alignment studies of sequences of the estBB1 and Pnb esterase 56C8 from B. subtilis showed that estBB1 has an alpha/beta hydrolase fold with catalytic triad formed by Ser190, Glu305 and His394 at active site and Ser190 is located in the conserved motif -G-X-S-X-G-.  相似文献   

7.
The gene for esterase (rEst1) was isolated from a new species of genus Rheinheimera by functional screening of E. coli cells transformed with the pSMART/HaeIII genomic library. E. coli cells harboring the esterase gene insert could grow and produce clear halo zones on tributyrin agar. The rEst1 ORF consisted of 1,029 bp, corresponding to 342 amino acid residues with a molecular mass of 37 kDa. The signal P program 3.0 revealed the presence of a signal peptide of 25 amino acids. Esterase activity, however, was associated with a homotrimeric form of molecular mass 95 kDa and not with the monomeric form. The deduced amino acid sequence showed only 54% sequence identity with the closest lipase from Cellvibrio japonicus strain Ueda 107. Conserved domain search and multiple sequence alignment revealed the presence of an esterase/ lipase conserved domain consisting of a GXSXG motif, HGGG motif (oxyanion hole) and HGF motif, typical of the class IV hormone sensitive lipase family. On the basis of the sequence comparison with known esterases/ lipases, REst1 represents a new esterase belonging to class IV family. The purified enzyme worked optimally at 50 degrees C and pH 8, utilized pNP esters of short chain lengths, and showed best catalytic activity with p-nitrophenyl butyrate (C?), indicating that it was an esterase. The enzyme was completely inhibited by PMSF and DEPC and showed moderate organotolerance.  相似文献   

8.
A high-molecular-mass subtilisin was found in culture broth of the alkaliphilic Bacillus sp. strain KSM-KP43. The gene encoding the enzyme (FT protease) was determined using a mixed primer designed from the N-terminal amino acid (aa) sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of a 2427-bp open reading frame (ORF) that encoded a putative prepro-peptide (152 aa) and a mature enzyme (656 aa; 68,506 Da). The deduced aa of the mature enzyme revealed a moderate homology to a subtilisin-type proteinase from Bacillus halodurans and a minor extracellular protease, Vpr, from Bacillus subtilis with 64% and 57% identity, respectively. The molecular mass of the purified recombinant FT protease was approximately 72 kDa as judged by both SDS-polyacrylamide gel electrophoresis (PAGE) and gel filtration. FT protease showed maximal activity toward glutaryl-Ala-Ala-Pro-Leu-p-nitroanilide at pH 10.5 and at 45 degrees C. The enzyme was rapidly inactivated by incubation over 45 degrees C for 15 min at both pH 7 and 10. Calcium ions were slightly protective for thermoinactivation of the enzyme.  相似文献   

9.
We purified an intracellular esterase that can function as an S-formylglutathione hydrolase from the yeast Saccharomyces cerevisiae. Its molecular mass was 40 kDa, as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was 5.0 by isoelectric focusing. The enzyme activity was optimal at 50 degrees C and pH 7.0. The corresponding gene, YJLO68C, was identified by its N-terminal amino acid sequence and is not essential for cell viability. Null mutants have reduced esterase activities and grow slowly in the presence of formaldehyde. This enzyme may be involved in the detoxification of formaldehyde, which can be metabolized to S-formylglutathione by S. cerevisiae.  相似文献   

10.
A method of isolating highly purified phospholipase D from Bac. subtilis G-22 is described. It includes ammonium sulphate fractionation, thermal denaturation, chromatography on lipoprotein bound with sepharose 6B and AH-sepharose 4B. The enzyme is 130-fold purified, its yield exceeds 90.0%, its specific activity is 164 units per mg of protein. The homogeneity of the enzyme is demonstrated by polyacrylamide gel electrophoresis, ultracentrifugation, isoelectric focusing and N-terminal amino acid determination by means of dinitrophenylation and dancylation. Proline is found to be N-terminal amino acid. The molecular weight of the enzyme, as determined from gel filtration through Sephadex G-100, is 21500 +/- 300, its sedimentation constant is 1.4S, isoelectric point is at pH 4.2. The molecular weight calculated from amino acid composition, is 21000--22000. Polypeptide chain contains of 196--205 amino acid residues. Phospholipase D develops its maximal activity at pH 8.5 and does not contain free SH-groups. Benzylsulphofluoride does not inhibit the enzyme activity. Phospholipase D is activated by Cd2+, Co2+, Zn2+, Ca2+ and is inhibited by EDTA, pIi50 being about 2.6.  相似文献   

11.
Extracellular cholesterol esterase of Burkholderia cepacia strain ST-200 was purified from the culture supernatant. Its molecular mass was 37 kDa. The enzyme was stable at pH 5.5–12 and active at pH 5.5–6, showing optimal activity at pH 7.0 at 45°C. Relative to the commercially available cholesterol esterases, the purified enzyme was highly stable in the presence of various water-miscible organic solvents. The enzyme preferentially hydrolyzed long-chain fatty acid esters of cholesterol, except for that of cholesteryl palmitate. The enzyme exhibited lipolytic activity toward various p-nitrophenyl esters. The hydrolysis rate of p-nitrophenyl caprylate was enhanced 3.5- to 7.2-fold in the presence of 5–20% (vol/vol) water-miscible organic solvents relative to that in the absence of organic solvents. The structural gene encoding the cholesterol esterase was cloned and sequenced. The primary translation product was predicted to be 365 amino acid residues. The mature product is composed of 325 amino acid residues. The amino acid sequence of the product showed the highest similarity to the lipase LipA (87%) from B. cepacia DSM3959.  相似文献   

12.
A collagenase in the culture supernatant of B. subtilis FS-2, isolated from traditional fish sauce, was purified. The enzyme had a molecular mass of about 125 kDa. It degraded gelatin with maximum activity at pH 9 and a temperature of 50 degrees C. The purified enzyme was stable over a wide range of pH (5-10) and lost only 15% and 35% activity after incubation at 60 degrees C and 65 degrees C for 30 min, respectively. Slightly inhibited by EDTA, soybean tripsin inhibitor, iodoacetamide, and iodoacetic acid, the enzyme was severely inhibited by 2-beta-mercaptoethanol and DFP. The protease from B. subtilis FS-2 culture digested acid casein into fragments with hydrophilic and hydrophobic amino acids as C-terminals, in particular Asn, Gly, Val, and Ile.  相似文献   

13.
Transglutaminase activity was detected in suspensions of purified spores prepared from lysozyme-treated sporulating cells of Bacillus subtilis AJ 1307. The enzyme was easily solubilized from the spores upon incubation at pH 10.5 at 37 degrees C. The transglutaminase activity was separated into two fractions upon purification by hydrophobic interaction chromatography (TG1 and TG2). Each enzyme was purified to electrophoretic homogeneity (about 1,000-fold). Both enzymes had the same molecular weight of 29,000 as estimated by SDS-PAGE, had the same N-terminal 30 amino acid sequence, and also showed the same optimal temperature (60 degrees C) and pH (8.2). The purified enzyme catalyzed formation of cross-linked epsilon-(gamma-glutamyl)lysine isopeptides, resulting in the gel-formation of protein solutions such as alphas-casein and BSA.  相似文献   

14.
Carboxypeptidase B was purified from the pyloric ceca of the starfish Asterias amurensis. The final enzyme preparation was nearly homogeneous in polyacrylamide gel electrophoresis and its molecular weight was estimated as approximately 34,000. The optimum pH and temperature of the enzyme for hydrolysis of benzoyl-glycyl-L-arginine were at approximately pH 7.5 and 55 degrees C, respectively. The enzyme was unstable at above 50 degrees C and at below pH 5.0. The enzyme was activated by Co(2+), but was inhibited by EDTA and Hg(2+). The N-terminal amino acid sequence of A. amurensis carboxypeptidase B was ASFDYNVYHSYQEIMNWITN.  相似文献   

15.
An enzyme with lipase and esterase activity was purified from bovine pancreas. Furthermore, a non-radioactive lipase assay was developed which is 100 times more sensitive than the conventional methods and allowed the characterization of the lipase activity of the enzyme. The lipase activity increased 42 times in the presence of 10 mM sodium taurocholate, which for the first time provides direct evidence that a bile salt-activated lipase (bp-BAL) was isolated from bovine pancreas. This conclusion is further supported by the fact that the N-terminal amino acid sequence of this lipase/esterase is 88% homologous to human milk BAL and human pancreatic BAL. Staining with various lectins showed that bp-BAL is a glycoprotein which contains fucose residues. Previously from bovine pancreas a lysophospholipase has been purified and a gene was cloned and sequenced encoding an enzyme with cholesterol esterase/lysophospholipase activity. Comparison of the N-terminal amino acid sequence of bp-BAL with the deduced amino acid sequence of the latter revealed that they are identical. Furthermore, the molecular weight of the purified bp-BAL of 63,000, as estimated by SDS-PAGE, is very similar to that of the purified lysophospholipase (65,000) and to the theoretical molecular weight of 65,147 of the cholesterol esterase/lysophospholipase. These data suggest that these three enzymes are one and the same.  相似文献   

16.
The amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the thermophile Bacillus caldolyticus is 81% identical to the amino acid sequence of 5-phospho-alpha-D-ribosyl 1-diphosphate synthase from the mesophile Bacillus subtilis. Nevertheless the enzyme from the two organisms possesses very different thermal properties. The B. caldolyticus enzyme has optimal activity at 60-65 degrees C and a half-life of 26 min at 65 degrees C, compared to values of 46 degrees C and 60 s at 65 degrees C, respectively, for the B. subtilis enzyme. Chemical cross-linking shows that both enzymes are hexamers. Vmax is determined as 440 micromol.min(-1).mg protein(-1) and Km values for ATP and ribose 5-phosphate are determined as 310 and 530 microM, respectively, for the B. caldolyticus enzyme. The enzyme requires 50 mM Pi as well as free Mg2+ for maximal activity. Manganese ion substitutes for Mg2+, but only at 30% of the activity obtained with Mg2+. ADP and GDP inhibit the B. caldolyticus enzyme in a cooperative fashion with Hill coefficients of 2.9 for ADP and 2.6 for GDP. Ki values are determined as 113 and 490 microm for ADP and GDP, respectively. At low concentrations ADP inhibition is linearly competitive with respect to ATP. A predicted structure of the B. caldolyticus enzyme based on homology modelling with the structure of B. subtilis 5-phospho-alpha-D-ribosyl 1-diphosphate synthase shows 92% of the amino acid differences to be on solvent exposed surfaces in the hexameric structure.  相似文献   

17.
A highly enantioselective l-menthyl acetate esterase was purified to homogeneity from Burkholderia cepacia ATCC 25416, with a recovery of 4.8% and a fold purification of 22.7. The molecular weight of the esterase was found to be 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was “MGARTDA”, and there was no homology in contrast to other Burkholderia sp. esterases. This enzyme preferentially hydrolyzed short-chain fatty acid esters of menthol with high stereospecificity and high hydrolytic activity, while long-chain l-menthyl esters were poor substrates. Considered its substrate specificity and N-terminal sequence, this esterase was concluded as a new enzyme belonging to the carboxylesterase group (EC 3.1.1.1) of esterase family. The optimum temperature and pH for enzyme activity using racemic menthyl acetate as substrate were 30 °C and 7.0, respectively. The esterase was more stable in the pH range of 7.0–9.0 and temperature range of 30–40 °C. Hydrolytic activity was enhanced by Ca2+, K+ and Mg2+, but completely inhibited by Hg2+, Cu2+, ionic detergents and phenylmethylsulfonyl fluoride (PMSF) at 0.01 M concentration.  相似文献   

18.
A cell wall hydrolase homologue, Bacillus subtilis YddH (renamed CwlT), was determined to be a novel cell wall lytic enzyme. The cwlT gene is located in the region of an integrative and conjugative element (ICEBs1), and a cwlT-lacZ fusion experiment revealed the significant expression when mitomycin C was added to the culture. Judging from the Pfam data base, CwlT (cell wall lytic enzyme T (Two-catalytic domains)) has two hydrolase domains that exhibit high amino acid sequence similarity to dl-endopeptidases and relatively low similarity to lytic transglycosylases at the C and N termini, respectively. The purified C-terminal domain of CwlT (CwlT-C-His) could hydrolyze the linkage of d-gamma-glutamyl-meso-diaminopimelic acid in B. subtilis peptidoglycan, suggesting that the C-terminal domain acts as a dl-endopeptidase. On the other hand, the purified N-terminal domain (CwlT-N-His) could also hydrolyze the peptidoglycan of B. subtilis. However, on reverse-phase HPLC and mass spectrometry (MS) and MS-MS analyses of the reaction products by CwlT-N-His, this domain was determined to act as an N-acetylmuramidase and not a lytic transglycosylase. Moreover, the site-directed mutagenesis analysis revealed that Glu-87 and Asp-94 are sites related with the cell wall lytic activity. Because the amino acid sequence of the N-terminal domain of CwlT exhibits low similarity compared with those of the soluble lytic transglycosylase and muramidase (goose lysozyme), this domain represents "a new category of cell wall hydrolases."  相似文献   

19.
Extracellular and cell-bound esterases produced by Acidiphilium sp. AIU 409 were homogeneously purified from culture broth and cells, respectively, and some properties were investigated. Both esterases more rapidly hydrolyzed p-nitrophenyl acyl esters containing long-chain fatty acids from C 8:0 to C 18:0 than those containing short-chain fatty acids from C 2:0 to C 6:0. The Km values for p-nitrophenyl long-chain fatty acid esters from C 8:0 to C 18:0 were approximately 1.3-1.5 mM. The enzymes were stable at 50 degrees C for 2 days between pH 3.0 and 6.5, and optimum pH and temperature were 5.0 and 70 degrees C, respectively. Enzyme activity was inhibited by phenylmethylsulfonyl fluoride and SDS. The molecular mass of both enzymes was estimated to be approximately 64 kDa by SDS-PAGE. The 23 amino acid sequence from the NH(2)-terminus was also the same in both enzymes. These results suggest that extracellular esterase might be composed of the same components as cell-bound esterase.  相似文献   

20.
A branching enzyme (EC 2.4.1.18) gene was isolated from an extremely thermophilic bacterium, Rhodothermus obamensis. The predicted protein encodes a polypeptide of 621 amino acids with a predicted molecular mass of 72 kDa. The deduced amino acid sequence shares 42-50% similarity to known bacterial branching enzyme sequences. Similar to the Bacillus branching enzymes, the predicted protein has a shorter N-terminal amino acid extension than that of the Escherichia coli branching enzyme. The deduced amino acid sequence does not appear to contain a signal sequence, suggesting that it is an intracellular enzyme. The R. obamensis branching enzyme was successfully expressed both in E. coli and a filamentous fungus, Aspergillus oryzae. The enzyme showed optimum catalytic activity at pH 6.0-6.5 and 65 degrees C. The enzyme was stable after 30 min at 80 degrees C and retained 50% of activity at 80 degrees C after 16 h. Branching activity of the enzyme was higher toward amylose than toward amylopectin. This is the first thermostable branching enzyme isolated from an extreme thermophile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号