首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
South African fynbos vegetation is threatened on a large scale by invasive woody plants. A major task facing nature conservation managers is to restore invaded areas. The aim of this study was to determine the restoration potential of fynbos following dense invasion by the Australian tree Acacia saligna. The impacts of dense invasion on seed‐bank composition and depth distribution were investigated to determine which fynbos guilds and species have the most persistent seed‐banks. Soil samples were excavated at three different depths for invaded and uninvaded vegetation at two sand plain and mountain fynbos sites. Seed‐banks were determined using the seedling emergence approach. Invasion caused a significant reduction in seed‐bank density and richness at all sites. There was a significant, but smaller, reduction in seed‐bank density and richness with soil depth at three sites. Seed‐bank composition and guild structure changed following invasion. Low persistence of long‐lived obligate seeders in sand plain fynbos seed‐banks indicates that this vegetation type will be difficult to restore from the seed‐bank alone following alien clearance. The dominance of short‐lived species, especially graminoids, forbs and ephemeral geophytes, suggests that regenerating vegetation will develop into a herbland rather than a shrubland. It is recommended that seed collecting and sowing form part of the restoration plan for densely invaded sand plain sites. As seed density remained higher towards the soil surface following invasion, there is no general advantage in applying a mechanical soil disturbance treatment. However, if the shallow soil seed‐bank becomes depleted, for example following a hot fire through dense alien slash, a soil disturbance treatment should be given to exhume the deeper viable seed‐bank and promote recruitment.  相似文献   

2.
Seedlings of Acacia tortilis (Forsk) Hyne and Acacia xanthophloea Benth. were raised under controlled glasshouse conditions. Control plants were watered daily while other treatments involved withholding water for 2, 4 and 6 days with 1‐day rehydration to container capacity. Compared to A. tortilis, A. xanthophloea seedlings showed higher leaf area, relative growth rates and total dry weight production under adequate water supply conditions. However, with increased water stress, A. xanthophloea seedlings could not alter their pattern of carbon allocation, retaining their root : shoot (r : s) ratio of about 0.5. By comparison, A. tortilis seedlings shifted carbon allocation to the roots, leading to a r : s ratio of 1.5 in water‐stressed seedlings, compared to 0.5 in the control plants. The ability of A. tortilis to reallocate carbon to the roots away from the shoots and to actually increase root growth compared to A. xanthophloea was a dehydration postponement strategy that may be important in species survival during drought.  相似文献   

3.
Plant communities dominated by narrow‐leaved mallee (Eucalyptus cneorifolia) are almost entirely confined to north‐eastern Kangaroo Island, South Australia, an area which has been extensively cleared for agriculture. Consequently, surviving examples consist mostly of small remnants which are thought to be senescent due to the exclusion of fire. This senescence is associated with the loss of many native understory species. Prescribed burns have been suggested as a management tool to stimulate the restoration of native plants from the soil seed bank; however, no seed bank studies have previously been conducted on Kangaroo Island and the seed bank literature usually focuses on particular species rather than on plant communities. We conducted an experiment to investigate the effects of the fire‐related cues heat and smoke on the germination of plants from the seed bank in soil sampled from 10 long‐ungrazed narrow‐leaved mallee sites on Kangaroo Island. Eighty trays of soil were monitored in a controlled glasshouse for five months after being subjected to heat and/or smoke treatments. The overall number of native, but not exotic, plant species germinating from the soil seed bank was significantly increased by all three fire‐related treatments (heat, smoke and heat plus smoke) compared with the control (no fire‐related treatment). Different plant life forms exhibited varying responses to heat and smoke treatments. The results of this study illustrate that the application of fire‐related treatments to soil seed banks in controlled glasshouse conditions can stimulate the recruitment of native species, including several species of conservation concern. These findings also indicate the potential of using these treatments for the ex situ germination of fire dependent species for revegetation purposes and indicate aspects of prescribed burns that may be important for restoring different components of native vegetation.  相似文献   

4.
Spatial and temporal patterns of riverine woodlands in arid regions of Africa are poorly documented despite their considerable conservation value. We studied 1540 ha of riverine woodland in the lower Turkwel River floodplain, Kenya, between 1990 and 1998. Forty‐one woodland patches were mapped and their soil physical and chemical characteristics, tree species diversity, woody cover, tree density, wood volume and woodland regeneration were determined. The riverine woodland comprised nine vegetation types and a total of 14 woody species. Woodland patch mosaics were associated with microtopographical features and selected soil attributes. The most important woody species were Hyphaene compressa H. Wendl., Acacia tortilis (Forssk.) Hayne and Cadaba rotundifolia Forssk. The exotic Prosopis chilensis (Mol.) St. was invading parts of the riverine woodland. Overall, woody species diversity was low compared to similar riverine woodlands in East Africa. Tree density, wood volume and woody plant regeneration declined over the 8‐year study period, while woody cover was unchanged. Reduced tree density, wood volume and regeneration of woody species might be linked to changes in river flood patterns following the impoundment of the Turkwel Gorge Dam. It is suggested that spatially heterogeneous and temporally stochastic regeneration events, together with occasional tree mortality caused by channel abandonment, create the complex pattern of woodland patches in the lower Turkwel River floodplain. The mapped woodland patches may serve as monitoring units, which in future could reveal the interplay between changes in flooding patterns as a result of dam impoundment, anthropogenic disturbance and the well‐being of the riverine woodlands.  相似文献   

5.
王东丽  焦菊英  王宁  寇萌  徐海燕  于卫洁 《生态学报》2017,37(20):6743-6752
为明确黄土丘陵沟壑区植物种子库如何调控种子萌发来提高个体适合度,选择研究区7种具有种子库的主要物种为研究对象,以刚成熟和室内储存种子为对照,比较植冠宿存(5个宿存期)和土壤埋藏(5a埋藏期)对植物种子萌发特性的影响,探讨植冠种子库与土壤种子库储存下的种子萌发策略。结果表明:7种植物种子经过不同种子库储存后萌发特性表现出明显的种间差异,黄刺玫(Rosa xanthina)和水栒子(Cotoneaster multiflorus)种子萌发力表现为植冠宿存不变型、土壤储存增强型,土壤储存明显提高水栒子种子萌发速率;达乌里胡枝子(Lespedeza davurica)和狼牙刺(Sophora davidii)种子萌发力表现为植冠宿存增强型、土壤储存减弱型,种子萌发历时表现为植冠宿存延长型,土壤种子库储存还可加快达乌里胡枝子萌发速率、缩短萌发历时;茭蒿(Artemisia giralaii)和铁杆蒿(Artemisia gmelinii),种子萌发率随植冠宿存时间先升高后降低,随土壤储存时间先降低后升高,土壤储存可推迟其萌发,铁杆蒿种子萌发速率在植冠与土壤储存后均加快;紫丁香(Syringa oblata)种子萌发率随植冠宿存先升高后降低,土壤储存明显加快其种子启动萌发与速率。在黄土丘陵沟壑区,植物种子经过植冠或土壤种子库储存,或增加、加快、提早萌发充分利用有利条件提高占据性,或减少、减缓、推迟萌发分摊不利条件的风险;而且该区植物植冠与土壤储存后种子萌发特性间的关系,体现各自适应环境与应对干扰的分工与协作策略,主要表现为:单一主导型和相辅相成型。  相似文献   

6.
Woody encroachment threatens prairie ecosystems globally, and thus understanding the mechanisms that facilitate woody encroachment is of critical importance. Coastal tallgrass prairies along the Gulf Coast of the US are currently threatened by the spread of several species of woody plants. We studied a coastal tallgrass prairie in Texas, USA, to determine if existing woody structure increased the supply of seeds from woody plants via dispersal by birds. Specifically, we determined if (i) more seedlings of an invasive tree (Tridacia sebifera) are present surrounding a native woody plant (Myrica cerifera); (ii) wooden perches increase the quantity of seeds dispersed to a grassland; and (iii) perches alter the composition of the seed rain seasonally in prairie habitats with differing amounts of native and invasive woody vegetation, both underneath and away from artificial wooden perches. More T. sebifera seedlings were found within M. cerifera patches than in graminoid‐dominated areas. Although perches did not affect the total number of seeds, perches changed the composition of seed rain to be less dominated by grasses and forbs. Specifically, 20–30 times as many seeds of two invasive species of woody plants were found underneath perches independent of background vegetation, especially during months when seed rain was highest. These results suggest that existing woody structure in a grassland can promote further woody encroachment by enhancing seed dispersal by birds. This finding argues for management to reduce woody plant abundance before exotic plants set seeds and argues against the use of artificial perches as a restoration technique in grasslands threatened by woody species.  相似文献   

7.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   

8.
With restricted populations and a small number of individuals, Discocactus bahiensis Britton & Rose (Cactaceae) is an endangered species in Brazil and its capacity for the formation of seed banks in the soil and the maintenance of seed viability remains unknown. Thus, the aim of the present study was to determine the most efficient way to maintain viability during storage of seeds of D. bahiensis . Seeds were stored in paper bags and either kept in a cold chamber (7 ± 2°C) in the dark (ex situ conservation) or buried in the soil to a depth of 5 cm in an area of natural occurrence of the species (in situ conservation). Germinability of the seed banks was evaluated monthly for 20 months. During the first 10 months of storage, germinability of the seeds conserved in situ and ex situ was similar to that of recently collected seeds. After this period, a 70% reduction in germinability was found for the seeds maintained in situ and there was nearly complete loss of viability after 12 months of storage in the field (germinability < 10% in the last 8 months of the experiment), indicating the ability to form persistent soil seed banks. In contrast, the seeds stored in the cold chamber maintained greater than 70% germinability throughout the entire analysis period, demonstrating that ex situ conservation is the most efficient way to maintain the viability of the seeds of this endangered species.  相似文献   

9.
Summary Assessment of the conservation significance of a species at a particular site involves estimating the population size. Generally this is based on a single survey. However, where plant species vary greatly in abundance in response to disturbance regimes, there will be uncertainty associated with the use of single estimates of abundance. The interpretation of such estimates is dependent on an understanding of the ecology of the species and the disturbance regimes that impact on it. We examined the usefulness of abundance estimates in the endangered shrub Grevillea caleyi (a fire‐sensitive shrub with a persistent soil seed bank) from south‐eastern Australia, where fire is a major landscape disturbance. Comparisons of estimates of abundance before and after fire showed very large changes in the number of plants of G. caleyi above ground. Changes in abundance of over two orders of magnitude were observed. The longer the site was left unburnt, the greater the magnitude of change in abundance after the next fire. Above‐ground plants may be rare or absent at sites unburnt for over 15–20 years, but were abundant after fire, due to re‐establishment from the soil seed bank. Sites burnt by two fires in quick succession showed declines in population abundance, most likely due to the soil seed bank not being replenished between such short interval fires. Assessments of the conservation significance of remnant sites of G. caleyi and similar species based on a single sample of above‐ground plant abundance at one time are considered inappropriate. The amount of available habitat for G. caleyi, either as area of occupancy or preferably extent of available habitat, was a moderate predictor of the likely magnitude of abundance in the species after fire. However, the usefulness of these measures for species whose biology is comparable to Grevillea caleyi, will be limited due to factors relating to the degree of species‐specific habitat requirements, local site fire history and the impact of any one fire on resultant post‐fire germination levels. Any assessment of conservation significance will require the interpretation of available information in relation to the ecology of a species.  相似文献   

10.
Yong Tang  Min Cao  Xianhui Fu 《Biotropica》2006,38(3):328-333
Dipterocarp rain forest reaches its northern latitudinal limit in Xishuangbanna, Southwest China. We studied the soil seedbank of dipterocarp rain forest in Xishuangbanna during the dry and wet seasons. Results showed that there were large seed accumulations in both the dry (mean ± SD; 3925 ± 2533 seeds/m2) and wet seasons (5415 ± 3232 seeds/m2). One hundred and sixteen species of seed plants were identified from germination, 66 percent of which were woody species. Weed or pioneer species dominated the seedbank. The soil seedbank in Xishuangbanna had similar species composition as compared to those in tropical Asia, but higher seed storage reflects the intense disturbance and forest fragmentation in this area.  相似文献   

11.
Conventionally, local seed sources are normally believed to perform better than introduced materials. However, studies show possibility of contrary results with many species such as Acacia senegal. The species is an economically and ecologically important tree of arid and semi‐arid lands of sub‐Saharan Africa. It produces gum arabic, used in land reclamation and agroforestry production. The species is however underutilized in Kenya due to lack of information on growth performance of different seed sources. Glasshouse provenance trial using seeds and soils from seven provenances in Kenya were used to evaluate interactions between seed sources and soils on growth and biomass. Seedling growth was assessed for 12 weeks in a randomized complete block design. Seed length, width, thickness and weight were measured. Seedlings height, root collar diameter, root dry weight, shoot dry weight and biomass were assessed and data subjected to univariate and multivariate analyses. No significant interaction between seed provenance and soils were evident; however, some provenances performed better across all the soils. Significant heritability and relationship between growth and environmental factors are reported. Overall, Ntumburi and Ngarendare provenances showed superior growth and plasticity. These provenances can be used tentatively as seed sources; however, field trials are recommended.  相似文献   

12.
Prescribed fire is an important management tool for reducing the dominance of non‐native species in annual grasslands; both annual and perennial native species show strong vegetative responses in the subsequent growing season. However, although the post‐fire contribution of native species to the seed bank is assumed to be larger than in pretreatment years, the effects on seed quality, particularly viability and longevity, are not well understood. In this study, I germinated Nassella pulchra (purple needlegrass) seed that had been stored for 10 years after collection from target plants receiving treatment combinations of summer burning and grazing by sheep. Seeds from burned plants were larger and had higher germinability than seed from unburned plants. Seeds from plants that were both burned and grazed had the highest germination. The strong relationship between long‐term viability and seed size suggests greater maternal provisioning and increased seed quality subsequent to burning and grazing. I conclude that managing for seed quality may be a useful approach for conservation of native species in California's critically endangered grassland habitats.  相似文献   

13.
The potential for the pre‐zygotic plant growth environment to play a role in determining seed longevity was investigated for a species that inhabits arid to semi‐arid Australia. Seed longevity is particularly important for wild populations in fluctuating environments because the longer a seed‐lot is able to survive in the soil seed bank the more likely it is to buffer the population from unpredictable environments. Thus Wahlenbergia tumidifructa plants received wet or dry soil moisture within a warm or cool glasshouse until flowering. Seeds subsequently produced by flowers that opened on the day that plants were moved to a common environment were collected at maturity and longevity assessed by controlled ageing at 60% relative humidity and 45°C. Mean seed longevity was similar for seeds produced by plants that grew in warm‐wet, warm‐dry and cool‐dry conditions (P50 of about 20 days), but extended for plants in cool‐wet conditions (P50 = 41.7 days). Cool temperatures resulted in seeds with a wider distribution of lifespans (σ = 20 days) than warm conditions (σ = 12 days); the large σ caused the extended P50 for cool‐wet plants, but not cool‐dry as a result of a concomitant reduction in initial seed germination (Ki). After moving to the common environment, all plants generated new vegetative material, which went on to produce seeds with similar longevity (P50 approx. 20 days) irrespective of original environment. Visible phenotypic responses of the parent to environmental conditions correlated with longevity and quality parameters of the progeny seeds, suggesting that a parental effect modified seed longevity. Our study provides novel empirical data showing that environmental conditions expected under climate change scenarios may potentially cause seed longevity to decline for a species that inhabits arid to semi‐arid Australia. These negative impacts on population buffering may weaken the storage effect mechanism of species coexistence in fluctuating environments.  相似文献   

14.
Wild rice, Oryza rufipogon, has endangered species conservation status and it is subject to in situ conservation in China. To understand the potential of the seed bank in species conservation and population restoration, this study compared the genetic diversity of O. rufipogon plants with that of its soil seed banks in two marshes. A total of 11 pairs of rice SSR primers were used and 9 were polymorphic. Allele frequencies of the seeds differed significantly from those of surface plants and varied between soil layers. Relatively more alleles and higher genetic diversity (H e) were found in plant populations, relative to seed banks. The numbers of germinable seeds and the level of genetic variation in seed banks decreased with the increasing of soil depth, indicating a rapid seed loss. Genetic differentiation was detected between sites and between plant and seed populations, as well as among seeds of different soil strata. Rapid seed loss, partly dormancy loss, and nonrandom seed mortality are discussed as the possible contributors to the pattern of reduced genetic variation within seed banks, compared to plants. These could also be responsible for the considerable genetic differentiation between populations. The seed population held about 72% of the total genetic variation of O. rufipogon in each marsh, indicating the potential of seed banks for restoring population variabilities if the plant populations were lost.  相似文献   

15.
Plant traits are fundamental components of the ecological strategies of plants, relating to how plants acquire and use resources. Their study provides insight into the dynamics of species geographical ranges in changing environments. Here, we assessed the variation in trait values at contrasting points along an environmental gradient to provide insight into the flexibility of species response to environmental heterogeneity. Firstly, we identified how commonly measured functional traits of four congeneric species (Banksia baxteri, B. coccinea, B. media and B. quercifolia) varied along a longitudinal gradient in the South Western Australian Floristic Region. This regional gradient provides significant variation in moisture, temperature and soil nutrients: soil nitrogen content decreases with declining rainfall and increasing temperature. We hypothesized that (i) the regional pattern in trait–environment associations across the species would match those observed on a global scale and (ii) that the direction and slopes of the within‐species relationships would be similar to those across species for each of the measured traits. Along the regional gradient we observed strong shifts in trait values, and cross‐species relationships followed the expected trend: specific leaf area was significantly lower, and leaf Narea and seed dry mass significantly higher, at the drier end of the rainfall gradient. However, traits within species were generally not well correlated with habitat factors: we found weak patterns among populations, either due to the small ecological gradient or perhaps because fine‐scale structuring among populations (at a micro‐evolutionary scale) was low due to high gene flow within species. Understanding how species traits shift as a result of climatic influences, both at the regional (across species) and local (within species) scale, provides insight into plant adaptation to the environment. Such studies have important applications for conservation biology and population management in the face of global change.  相似文献   

16.
土壤种子库是森林群落更新的主要来源之一,对森林的演替和恢复等具有重要意义。生境片段化现象正日益严重地影响着森林群落,并可影响森林土壤种子库。研究了千岛湖地区的大陆及岛屿次生马尾松林内土壤种子库的组成及其影响因素(e.g.,岛屿面积,形状指数,隔离度和距岛屿边缘距离等)。根据大陆和岛屿的面积及边缘梯度,采用大数量小样方法,分别在土壤种子库最大化(初冬,2015年12月)和最小化(晚春,2016年4月)时期对马尾松林内土壤进行了机械取样。对土壤样品进行萌发实验,检测了两个时期的土壤种子库上层(0—2 cm)和下层(2—5 cm)种子组成,并通过广义线性混合效应模型等手段分析其影响因素。结果显示:(1)所有316个土壤样本中,萌发出幼苗1422株,隶属于29科、40属、41种。其中,木本植物幼苗占13种1024株,草本占28种398株。(2)Jaccard指数和相关性分析均显示初冬、晚春时期的土壤种子库组成具有很高的相似性;土壤种子库上、下层组成的相似性也很高。(3)广义线性混合效应模型分析显示,在大陆和岛屿上,土壤种子库下层种子含量低于上层;而大陆样地土壤种子库中的木本植物种子数较岛屿样地高。岛屿上,土壤种子库中的种子数随土层的加深而降低;随边缘梯度升高也下降,尤其是草本植物的种子。对于岛屿上的木本植物,不耐阴种的种子数量远大于耐阴种,尤其是土壤下层。表明千岛湖地区马尾松林内土壤种子库组成受到生境片段化的影响,进而可能作用于该类型森林群落的演替。  相似文献   

17.
We examined effectiveness of African savannah elephant dung as a protective barrier for seeds of three tree species, Acacia tortilis Hayne, Tamarindus indica L. and Ximenia aegyptiaca L. Seeds were collected from dung and underneath fruiting trees in Tarangire National Park, Tanzania. Experimental treatments were established to test: (i) the efficacy of dung in protecting seeds of A. tortilis from bruchid beetle infestation and the role of animals larger than insects in removing seeds; (ii) the same tenets as in Experiment 1, using seeds of T. indica; and (iii) the effect of distance on survival of seeds of X. aegyptiaca. Sites were established during two field seasons underneath conspecific trees, where seed predation was likely highest. Repeated‐measures two‐way ANOVA indicated that there was no treatment effect for Experiment 1. For Experiments 2 and 3 in October 2013, seeds in dung experienced less beetle infestation than fresh seeds. Repeated‐measures two‐way ANOVA and Tukey's HSD indicated that treatment effect differed among all treatments. Passed seeds at distances ≥5 m experienced less beetle infestation than fresh seeds underneath conspecifics. African savannah elephants appear to be important seed dispersers of these three tree species.  相似文献   

18.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   

19.
  • Good‐quality dry seeds of some orchids have the potential to survive for decades under conventional seed bank conditions, but further research is needed to fill existing gaps in knowledge regarding seed behaviour under long‐term dry storage. The objectives of this study were to evaluate germination ability on two asymbiotic culture media with different nitrogen source; to assess seed desiccation tolerance needed for the storage at sub‐zero temperatures; and to study the effects of dry storage at low temperature.
  • Asymbiotic seed germination tests of four Anacamptis species were carried out to evaluate the effects of different culture media, dehydration and dry storage on germination ability. Viability of 4‐year‐stored seeds was assessed by means of the tetrazolium test.
  • Generalised linear model (GLM) analysis detected significant effects (P < 0.01) of the species, medium and storage time on total germination, while dehydration did not significantly affect it. Except for A. palustris, germination percentage was minimum after 1‐month storage and increased with longer storage periods. Tetrazolium viability tests detected high percentages of viable seed (>90%) following 4‐year storage in three out of four species.
  • Seeds of the four Anacamptis species proved to be desiccation tolerant and have orthodox storage behaviour. The consequence of these findings is of interest to practical conservation approaches for orchids in seed‐banking. The results highlight the importance of multiple assessments of seed quality, both viability and germination, to understand seed storage behaviour.
  相似文献   

20.
In southeastern Arizona, Prosopis juliflora (Swartz) DC. and Quercus emoryi Torr. are the dominant woody species at grassland/woodland boundaries. The stability of the grassland/woodland boundary in this region has been questioned, although there is no direct evidence to confirm that woodland is encroaching into grassland or vice versa. We used stable carbon isotope analysis of soil organic matter to investigate the direction and magnitude of vegetation change along this ecotone. 13C values of soil organic matter and roots along the ecotone indicated that both dominant woody species (C3) are recent components of former grasslands (C4), consistent with other reports of recent increases in woody plant abundance in grasslands and savannas throughout the world. Data on root biomass and soil organic matter suggest that this increase in woody plant abundance in grasslands and savannas may increase carbon storage in these ecosystems, with implications for the global carbon cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号