首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although genomic selection offers the prospect of improving the rate of genetic gain in meat, wool and dairy sheep breeding programs, the key constraint is likely to be the cost of genotyping. Potentially, this constraint can be overcome by genotyping selection candidates for a low density (low cost) panel of SNPs with sparse genotype coverage, imputing a much higher density of SNP genotypes using a densely genotyped reference population. These imputed genotypes would then be used with a prediction equation to produce genomic estimated breeding values. In the future, it may also be desirable to impute very dense marker genotypes or even whole genome re‐sequence data from moderate density SNP panels. Such a strategy could lead to an accurate prediction of genomic estimated breeding values across breeds, for example. We used genotypes from 48 640 (50K) SNPs genotyped in four sheep breeds to investigate both the accuracy of imputation of the 50K SNPs from low density SNP panels, as well as prospects for imputing very dense or whole genome re‐sequence data from the 50K SNPs (by leaving out a small number of the 50K SNPs at random). Accuracy of imputation was low if the sparse panel had less than 5000 (5K) markers. Across breeds, it was clear that the accuracy of imputing from sparse marker panels to 50K was higher if the genetic diversity within a breed was lower, such that relationships among animals in that breed were higher. The accuracy of imputation from sparse genotypes to 50K genotypes was higher when the imputation was performed within breed rather than when pooling all the data, despite the fact that the pooled reference set was much larger. For Border Leicesters, Poll Dorsets and White Suffolks, 5K sparse genotypes were sufficient to impute 50K with 80% accuracy. For Merinos, the accuracy of imputing 50K from 5K was lower at 71%, despite a large number of animals with full genotypes (2215) being used as a reference. For all breeds, the relationship of individuals to the reference explained up to 64% of the variation in accuracy of imputation, demonstrating that accuracy of imputation can be increased if sires and other ancestors of the individuals to be imputed are included in the reference population. The accuracy of imputation could also be increased if pedigree information was available and was used in tracking inheritance of large chromosome segments within families. In our study, we only considered methods of imputation based on population‐wide linkage disequilibrium (largely because the pedigree for some of the populations was incomplete). Finally, in the scenarios designed to mimic imputation of high density or whole genome re‐sequence data from the 50K panel, the accuracy of imputation was much higher (86–96%). This is promising, suggesting that in silico genome re‐sequencing is possible in sheep if a suitable pool of key ancestors is sequenced for each breed.  相似文献   

2.
The efficient evolution of a population requires both genetic diversity and stable reproduction of advantageous genotypes. The accuracy of DNA replication guarantees the stable reproduction, while errors during DNA replication produce the genetic diversity. Thus, one key to the promotion of evolution is inherent in DNA replication. In bacteria, replication forks progress bidirectionally from the single origin of replication on a genome. One replication fork contains two DNA polymerase molecules so that four DNA polymerases simultaneously carry out the replication of a genome. It is generally believed that the fidelity of the intracellular DNA polymerases is identical (parity strategy). To test this, we examined the effects of the intracellular coexistence of a mutator polymerase with low fidelity and a normal polymerase with high fidelity on adaptive evolution (disparity strategy). From the analysis using genetic algorithms based on the bacterial replication, it was found that the population using the disparity strategy could further expand its genetic diversity and preserve the advantageous genotypes more profoundly than the parity population. This strongly suggests that bacteria replicating with a disparity strategy may undergo rapid evolution, particularly during severe environmental changes. The implications of the conspicuous adaptability of Escherichia coli mutator strains are discussed in this context.  相似文献   

3.
Yahara K  Horie R  Kobayashi I  Sasaki A 《Genetics》2007,176(1):513-526
The necessity to repair genome damage has been considered to be an immediate factor responsible for the origin of sex. Indeed, attack by a cellular restriction enzyme of invading DNA from several bacteriophages initiates recombinational repair by gene conversion if there is homologous DNA. In this work, we modeled the interaction between a bacteriophage and a bacterium carrying a restriction enzyme as antagonistic coevolution. We assume a locus on the bacteriophage genome has either a restriction-sensitive or a restriction-resistant allele, and another locus determines whether it is recombination/repair proficient or defective. A restriction break can be repaired by a co-infecting phage genome if one of them is recombination/repair proficient. We define the fitness of phage (resistant/sensitive and repair-positive/-negative) genotypes and bacterial (restriction-positive/-negative) genotypes by assuming random encounter of the genotypes, with given probabilities of single and double infections, and the costs of resistance, repair, and restriction. Our results show the evolution of the repair allele depends on b(1)/b(0), the ratio of the burst size b(1) under damage to host cell physiology induced by an unrepaired double-strand break to the default burst size b(0). It was not until this effect was taken into account that the evolutionary advantage of DNA repair became apparent.  相似文献   

4.

   

Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of the sexuality is evident from the fact that the genotypes of the individuals with an enhanced competitiveness are not transmitted to the next generation. Instead, after mating with "ordinary" individuals, these genotypes scatter and rearrange in new gene combinations, thus preventing the winner from exploiting the success.  相似文献   

5.
The possibility to genotype embryos prior to implantation would have advantages for increasing the speed of selection of cattle. Reliable genotyping requires more DNA than can be obtained from biopsies of embryos, if they are to remain viable. Multiple displacement amplification (MDA) is a whole genome amplification technique used to increase the amount of DNA from biopsies for analysis. Reduced genome coverage resulting in Allele Drop Out (ADO) at heterozygous loci or missing genotypes are drawbacks of MDA.The present article describes the correlation between the input DNA quantity or embryo biopsy size and MDA success. Missing genotypes and ADO drastically increased when fewer than 30–40 cells or the genomic equivalents were used. However, embryo viability was found to be reduced if biopsied with more than 10 cells. Therefore, in vitro cell culture was investigated as a means to increase the number of cells available and the genotyping reliability.  相似文献   

6.
Darwinian evolution favours genotypes with high fitness (‘survival of the fittest’). Models of quasi‐species evolution, however, suggest that in some cases selection may favour genotypes that are more robust against the impact of mutations (‘survival of the flattest’) even if these genotypes have lower fitness. I show that the opposite effect will be observed if competition occurs during development (e.g. among embryos or ovules) or before the adult phase (e.g. among the progeny of an individual). If viability is not affected by selection at these initial stages (soft selection), the genotypes that are more sensitive to the effects of mutations may increase in frequency because they get rid more easily of deleterious mutations. In a simple theoretical model of mutation and selection, genotypes located in steeper regions of the fitness surface are favoured (‘survival of the steepest’) even if they do not have higher viability, and even if they have slightly deleterious effects. Hypersensitive genes are potentially harmful for the individual, but with soft selection during the juvenile phase they persist in the genome because they reduce competition with their mutants. Soft selection occurs in practically all vascular plants and in many animals, therefore antirobustness may be a very common feature of the genome of multicellular organisms.  相似文献   

7.
Microsatellite repeats consisting of dinucleotide sequences are ubiquitous in the human genome and have proven useful for linkage analysis, positional cloning and forensic identification purposes. In this study, the potential of utilizing the ligase detection reaction for the analysis of such microsatellite repeat sequences was investigated. Initially, the fidelity of thermostable DNA ligases was measured for model dinucleotide repeat sequences. Subsequently, the effect of modified oligonucleotides on ligation fidelity for dinucleotide repeats was determined using the nucleoside analogs nitroimidazole, inosine, 7-deazaguanosine and 2-pyrimidinone, as well as natural base mismatches. The measured error rates for a standard dinucleotide template indicated that the nitroimidazole nucleoside analogs could be used to increase the fidelity of ligation when compared to unmodified primers. Furthermore, use of formamide in the ligation buffer also increased ligation fidelity for dinucleotide repeat sequences. Using ligation-based assays to detect polymorphic alleles of microsatellite repeats in the human genome opens the possibility of using array-based typing of these loci for human identification, loss-of-heterozygosity studies and linkage analysis.  相似文献   

8.
Hepatitis C virus (HCV) is a major cause of liver disease throughout the world. The genome of this virus consists of approximately 10,000 bp and codes for 10 mature polypeptides. Genome sequence comparison has revealed the existence of six major genotypes and a large number of subtypes. The genotypes can be distinguished by whole genome or genome fragment sequencing, genotype specific amplification of a genomic region or PCR amplification, followed by hybridization or restriction digestion, among other methods. There is a markedly heterogeneous geographical distribution of the HCV genotypes in the world. Different genotypes have been linked to distinct clinical outcomes and to differences in the susceptibility of the virus to interferon treatment. Several studies have been conducted to determine the distribution of HCV genotypes among different groups of individuals in Brazil. Most of these studies indicate a higher prevalence of genotype 1, followed by genotypes 3 and 2. Differences in genotypes can affect serological detection as well as the clinical outcome of the disease and sensibility to interferon treatment. Further studies need to be conducted to determine the degree of differentiation of circulating HCV genotypes in different patient groups in Brazil.  相似文献   

9.
Switching of symbiotic partners pervades most mutualisms, despite mechanisms that appear to enforce partner fidelity. To investigate the interplay of forces binding and dissolving mutualistic pairings, we investigated partner fidelity at the population level in the attine ant-fungal cultivar mutualism. The ants and their cultivars exhibit both broad-scale co-evolution, as well as cultivar switching, with short-term symbiont fidelity maintained by vertical transmission of maternal garden inoculates via dispersing queens and by the elimination of alien cultivar strains. Using microsatellite markers, we genotyped cultivar fungi associated with five co-occurring Panamanian attine ant species, representing the two most derived genera, leaf-cutters Atta and Acromyrmex. Despite the presence of mechanisms apparently ensuring the cotransmission of symbiont genotypes, different species and genera of ants sometimes shared identical fungus garden genotypes, indicating widespread cultivar exchange. The cultivar population was largely unstructured with respect to host ant species, with only 10% of the structure in genetic variance being attributable to partitioning among ant species and genera. Furthermore, despite significant genetic and ecological dissimilarity between Atta and Acromyrmex, generic difference accounted for little, if any, variance in cultivar population structure, suggesting that cultivar exchange dwarfs selective forces that may act to create co-adaptive ant-cultivar combinations. Thus, binding forces that appear to enforce host fidelity are relatively weak and pairwise associations between cultivar lineages and ant species have little opportunity for evolutionary persistence. This implicates that mechanisms other than partner fidelity feedback play important roles in stabilizing the leafcutter ant-fungus mutualism over evolutionary time.  相似文献   

10.
11.
Evolutionary stasis is discussed in light of the idea that the common output of every successful evolution is the creation of the entities that are increasingly resistant to further change. The moving force of evolution is entropy. This general aspiration for chaos is a cause of the mortality of organisms and extinction of species. However, being a prerequisite for any motion, entropy generates (by chance) novelties, which may happen to be (by chance) more resistant to further decay and thus survive. The entities that change rapidly disappear. All existing entities are endowed with an ability to resist further change. In simple organisms, the stasis is primarily achieved by means of the high fidelity of DNA reproduction. In organisms with a large genome and complex development, the achievable fidelity of genome reproduction fails to guarantee homeorhetic reproduction: there is more mutation than reproduction. Such species must be capable of surviving and remain phenotypically unchanged at continuous changes of their genes. This capability (canalization or robustness) reflects a global degeneracy of the link structure-function: there are more genotypes than phenotypes. Hence, function (i.e. meaning), not structure, is selected. The selection for successful ontogenesis in a varying environment creates developmental robustness to mutational and environmental perturbations and, consequently, to the halt of evolution. Evolution is resistance to entropy, the adaptation to environment being only one of the means of this resistance. Everything essential in biology is determined not by physical causality but by semantic rules and goal-directed programs. This principal operates on various levels of biological organization.  相似文献   

12.
13.
We study a population genetics model of an organism with a genome of L(tot)loci that determine the values of T quantitative traits. Each trait is controlled by a subset of L loci assigned randomly from the genome. There is an optimum value for each trait, and stabilizing selection acts on the phenotype as a whole to maintain actual trait values close to their optima. The model contains pleiotropic effects (loci can affect more than one trait) and epistasis in fitness. We use adaptive walk simulations to find high-fitness genotypes and to study the way these genotypes are distributed in sequence space. We then simulate the evolution of haploid and diploid populations on these fitness landscapes and show that the genotypes of populations are able to drift through sequence space despite stabilizing selection on the phenotype. We study the way the rate of drift and the extent of the accessible region of sequence space is affected by mutation rate, selection strength, population size, recombination rate, and the parameters L and T that control the landscape shape. There are three regimes of the model. If LTL(tot), there are many small peaks that can be spread over a wide region of sequence space. Compensatory neutral mutations are important in the population dynamics in this case.  相似文献   

14.
Different studies have suggested that mutation rate varies at different positions in the genome. In this work we analyzed if the chromosomal context and/or the presence of GATC sites can affect the frameshift mutation rate in the Escherichia coli genome. We show that in a mismatch repair deficient background, a condition where the mutation rate reflects the fidelity of the DNA polymerization process, the frameshift mutation rate could vary up to four times among different chromosomal contexts. Furthermore, the mismatch repair efficiency could vary up to eight times when compared at different chromosomal locations, indicating that detection and/or repair of frameshift events also depends on the chromosomal context. Also, GATC sequences have been proved to be essential for the correct functioning of the E. coli mismatch repair system. Using bacteriophage heteroduplexes molecules it has been shown that GATC influence the mismatch repair efficiency in a distance- and number-dependent manner, being almost nonfunctional when GATC sequences are located at 1 kb or more from the mutation site. Interestingly, we found that in E. coli genomic DNA the mismatch repair system can efficiently function even if the nearest GATC sequence is located more than 2 kb away from the mutation site. The results presented in this work show that even though frameshift mutations can be efficiently generated and/or repaired anywhere in the genome, these processes can be modulated by the chromosomal context that surrounds the mutation site.  相似文献   

15.
DNA repair pathways are essential for maintaining genome stability. DNA polymerase beta plays a critical role in base-excision repair in vivo. DNA polymerase lambda, a recently identified X-family homolog of DNA polymerase beta, is hypothesized to be a second polymerase involved in base-excision repair. The full-length DNA polymerase lambda is comprised of three domains: a C-terminal DNA polymerase beta-like domain, an N-terminal BRCA1 C-terminal domain, and a previously uncharacterized proline-rich domain. Strikingly, pre-steady-state kinetic analyses reveal that, although human DNA polymerase lambda has almost identical fidelity to human DNA polymerase beta, the C-terminal DNA polymerase beta-like domain alone displays a dramatic, up to 100-fold loss in fidelity. We further demonstrate that the non-enzymatic proline-rich domain confers the increase in fidelity of DNA polymerase lambda by significantly lowering incorporation rate constants of incorrect nucleotides. Our studies illustrate a novel mechanism, in which the DNA polymerase fidelity is controlled not by an accessory protein or a proofreading exonuclease domain but by an internal regulatory domain.  相似文献   

16.
17.

Background and Aims

The study of rapid evolution in invasive species has highlighted the fundamental role played by founder events, emergence of genetic novelties through recombination and rapid response to new selective pressures. However, whether rapid adaptation of introduced species can be driven by punctual changes in genome organization has received little attention. In plants, variation in genome size, i.e. variation in the amount of DNA per monoploid set of chromosomes through loss or gain of repeated DNA sequences, is known to influence a number of physiological, phenological and life-history features. The present study investigated whether change in genome size has contributed to the evolution of greater potential of vegetative growth in invasive populations of an introduced grass.

Methods

The study was based on the recent demonstration that invasive genotypes of reed canarygrass (Phalaris arundinacea) occurring in North America have emerged from recombination between introduced European strains. The genome sizes of more than 200 invasive and native genotypes were measured and their genome size was related to their phenotypic traits measured in a common glasshouse environment. Population genetics data were used to infer phylogeographical relationships between study populations, and the evolutionary history of genome size within the study species was inferred.

Key Results

Invasive genotypes had a smaller genome than European native genotypes from which they are derived. This smaller genome size had phenotypic effects that increased the species'' invasive potential, including a higher early growth rate, due to a negative relationship between genome size and rate of stem elongation. Based on inferred phylogeographical relationships of invasive and native populations, evolutionary models were consistent with a scenario of genome reduction by natural selection during the invasion process, rather than a scenario of stochastic change.

Conclusions

Punctual reduction in genome size could cause rapid changes in key phenotypic traits that enhance invasive ability. Although the generality of genome size variation leading to phenotypic evolution and the specific genomic mechanisms involved are not known, change in genome size may constitute an important but previously under-appreciated mechanism of rapid evolutionary change that may promote evolutionary novelties over short time scales.Key words: Biological invasion, evolutionary models, genome size, Phalaris arundinacea, quantile regression, relative growth rate, rapid evolution  相似文献   

18.
The fidelity of DNA replication requires an appropriate balance of dNTPs, yet the nascent leading and lagging strands of the nuclear genome are primarily synthesized by replicases that differ in subunit composition, protein partnerships and biochemical properties, including fidelity. These facts pose the question of whether imbalanced dNTP pools differentially influence leading and lagging strand replication fidelity. Here we test this possibility by examining strand-specific replication infidelity driven by a mutation in yeast ribonucleotide reductase, rnr1-Y285A, that leads to elevated dTTP and dCTP concentrations. The results for the CAN1 mutational reporter gene present in opposite orientations in the genome reveal that the rates, and surprisingly even the sequence contexts, of replication errors are remarkably similar for leading and lagging strand synthesis. Moreover, while many mismatches driven by the dNTP pool imbalance are efficiently corrected by mismatch repair, others are repaired less efficiently, especially those in sequence contexts suggesting reduced proofreading due to increased mismatch extension driven by the high dTTP and dCTP concentrations. Thus the two DNA strands of the nuclear genome are at similar risk of mutations resulting from this dNTP pool imbalance, and this risk is not completely suppressed even when both major replication error correction mechanisms are genetically intact.  相似文献   

19.
Recombination is a powerful policing mechanism to control intragenomic cheats. The “parliament of the genes” can often rapidly block driving genes from cheating during meiosis. But what if the genome parliament is reduced to only two members, or supergenes? Using a series of simple game‐theoretic models inspired by the peculiar genetics of Oenothera sp., we illustrate that a two supergene genome (α and β) can produce a number of surprising evolutionary dynamics, including increases in lineage longevity following a transition from sexuality (outcrossing) to asexuality (clonal self‐fertilization). We end by interpreting the model in the broader context of the evolution of mutualism, which highlights that greater α, β cooperation in the self‐fertilizing model can be viewed as an example of partner fidelity driving multilineage cooperation.  相似文献   

20.
Unisexual vertebrates are model systems for understanding the evolution of sex. Many predominantly clonal lineages allow occasional genetic recombination, which may be sufficient to avoid the accumulation of deleterious mutations and parasites. Introgression of paternal DNA into an all-female lineage represents a one-way flow of genetic material. Over many generations, this could result in complete replacement of the unisexual genomes by those of the donor species. The process of genome replacement may be counteracted by contemporary dispersal or by positive selection on hybrid nuclear genomes in ecotones. I present a conceptual model that relates nuclear genome replacement, positive selection on hybrids and biogeography in unisexual systems. I execute an individual-based simulation of the fate of hybrid genotypes in contact with a single host species. I parameterize these models for unisexual salamanders in the Ambystoma genus, for which the frequency of genome replacement has been a source of ongoing debate. I find that, if genome replacement occurs at a rate greater than 1/10,000 in Ambystoma, then there must be compensating positive selection in order to maintain observed levels of hybrid nuclei. Future researchers studying unisexual systems may use this framework as a guide to evaluating the hybrid superiority hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号