首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifteen or 30 days of anaerobic growth conditions significantly reduced shoot and root nitrogen, potassium, phosphorus, iron and manganese concentrations in seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.] and drought-hardy and wet-site loblolly pine ( P. taeda L.) grown in a culture system using non-circulating, continuously flowing solution. Calcium and shoot magnesium levels were least affected by anaerobic growth conditions – largely reflecting the passive nature of their uptake. Shoot and root nutrient content (mg nutrient pot-1) followed similar trends, with wet-site loblolly and pond pine seedlings least affected by anaerobic solution culture. Shoot biomass of wet-site loblolly and pond pine seedlings was not affected by anaerobiosis, suggesting an increase in shoot nutrient utilization efficiency. Root biomass was significantly reduced by 15 or 30 days of anaerobiosis, with sand pine exhibiting the largest reduction in root dry weight (57%).
These results suggest that anaerobiosis interferes with net nutrient acquisition, even under the high nutrient conditions provided by solution culture. Sand pine suffered the largest reductions in shoot and root biomass and nutrient concentrations, showing earlier symptoms of waterlogging injury and nutrient stress than drought-hardy loblolly pine seedlings. Whether net nutrient acquisition decreased because of the reduction in root surface area available for absorption and/or reduced uptake efficiency cannot be ascertained from these data.  相似文献   

2.
Summary Fertility levels in soils beneathPinus caribaea trees were examined in the Mountain Pine Ridge savannas, Belize, where fire control has precipitated the development of pine woodland. Slight surface soil enrichment was recorded beneath pine canopies, but to levels well below those found beneath associated hardwoods. Estimates of total nutrient pools beneath trees showed modest cation accumulation beneath a 73 year old tree but some defecits in Ca and Mg beneath a 24 year old tree. A tap root cutting experiment on trees of the same species revealed no significant declines in foliar nutrient levels after 19 months. It is concluded that no pronounced long-term deterioration in soil fertility levels is developing beneath stands ofP. caribaea in the savanna, although some temporary nutrient declines may exist beneath young pine stands. Atmospheric inputs are the most likely source of nutrient accretion and it is suggested that the establishment of hardwood associates with pine may enhance the rates of nutrient capture from this source.  相似文献   

3.
Seedlings of pond pine ( Pinus serotina Michx.), sand pine [ P. clausa (Engelm.) Sarg.] and two edaphic seed sources of loblolly pine ( P. taeda L., dry- and wet-site seed sources) were grown in non-circulating, continuously flowing solution culture under aerobic (250 μ M O2) and anaerobic (≤ 23 μ M O2) conditions. Survival was 100% for all seedlings at 11 weeks. Although shoot height, biomass and leaf emergence of loblolly and pond pine seedlings were not significantly affected by 15 or 30 days of anaerobic growth conditions, root biomass was significantly reduced. Sand pine suffered the largest reduction in biomass, showing extensive root dieback and shoot chlorosis with retarded leaf development. These anaerobically induced symptoms of flooding injury were less severe in dry-site loblolly pine, and absent in wet-site loblolly and pond pine seedlings. Adventitious or new, secondary roots, and stem or taproot lenticels were particularly abundant under the 30-day anaerobic treatment in wet-site loblolly and pond pine seedlings, present to a lesser degree in dry-site loblolly pine, and nearly absent in sand pine seedlings. These results indicate that much of the immediate damage from flooding is due to the anoxic condition of the root rather than to the build-up of phytotoxins or soil nutrient imbalances. On the basis of overall seedling vigor, root plasticity and growth, we suggest the following flooding-tolerance/intolerance species (seed source) gradient: pond pine ≥ wet-site loblolly pine > dry-site loblolly pine > sand pine.  相似文献   

4.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

5.
King  J.S.  Thomas  R.B.  Strain  B.R. 《Plant and Soil》1997,195(1):107-119
Rising atmospheric carbon dioxide, nitrogen deposition and warmer temperatures may alter the quantity and quality of plant-derived organic matter available to soil biota, potentially altering rates of belowground herbivory and decomposition. Our objective was to simulate future growth conditions for an early successional (loblolly) and late successional (ponderosa) species of pine to determine if the physical and chemical properties of the root systems would change. Seedlings were grown for 160 days in greenhouses at the Duke University Phytotron at 35 or 70 Pa CO2 partial pressure, ambient or ambient + 5 °C temperature, and 1 or 5 mMNH4O3. Roots from harvested seedlings were analyzed for changes in surface area, specific root length, mass, total nonstructural carbohydrates (TNC), and concentrations of macro-nutrients. Surface area increased in both species under elevated CO2, due primarily to increases in root length, and this response was greatest (+138%) in loblolly pine at high temperature. Specific root length decreased in loblolly pine at elevated CO2 but increases in mass more than compensated for this, resulting in net increases in total length. TNC was unaffected and nutrient concentrations decreased only slightly at elevated CO2, possibly from anatomical changes to the root tissues. We conclude that future growth conditions will enhance soil exploration by some species of pine, but root carbohydrate levels and nutrient concentrations will not be greatly affected, leaving rates of root herbivory and decomposition unaltered.  相似文献   

6.
7.
Mc Gregor , William H. Davis (Clemson Coll., Clemson, S.C.), and Paul J. Kramer . Seasonal trends in rates of photosynthesis and respiration of loblolly pine and white pine seedlings. Amer. Jour. Bot. 50(8): 760–765. Illus. 1963.—Seasonal trends in the rates of photosynthesis and respiration of potted loblolly and white pine seedlings were studied by measuring CO2 exchange with an infra-red gas analyzer at intervals during a year. The seedlings were kept out-of-doors, but measurements were made indoors at 25 C and 4000 ft-c of light. Beginning in February, the rate of photosynthesis per plant of both species increased, reaching a peak in mid-September for loblolly pine and in mid-July for white pine and then declining rapidly after mid-September for both species. The spring increase began before new needles emerged and the autumn decline was not accompanied by appreciable loss of foliage. The respiration rate of loblolly pine increased steadily throughout the year. Respiration of white pine increased until mid-May and then remained fairly constant through the remainder of the year. Maximum rate of photosynthesis per unit of fascicle length occurred in July for the white pine and in May for the loblolly pine, and rates declined after September in both species. Respiration rate per unit of fascicle length showed a marked increase as spring growth began in April, then decreased to a minimum in September and increased during the winter in both species. Total chlorophyll per seedling reached a maximum in September for both species and declined slightly during winter. Total chlorophyll per unit of fascicle length increased in the spring, declined slightly in midseason, and increased again in September. Photosynthesis per unit of chlorophyll reached a maximum in May for loblolly pine and in July for white pine. Stem elongation of white pine was 88% completed by May 15. On the same date, stem elongation of loblolly pine was only 42% completed.  相似文献   

8.
The presence of volunteer hardwood species in loblolly pineplantations demands studies on both intra- and inter-specificcompetition in order to build growth and yield models and toguide vegetation management for these stands. This paper, basedon analyses of data collected from a thinning study, reportsan investigation of responses of loblolly pine and hardwoodspecies towards intra- and inter-specific competition. Underhigh levels of overall competition, hardwood species were morecompetitive, both intra- and inter-specifically. Intra-specificcompetition was more effective in reducing hardwood basal areagrowth than inter-specific competition under high levels ofoverall competition. However, under low levels of overall competition,intra- and inter-specific competition were quantitatively similartoward loblolly pine basal area growth. The basal area growthof hardwoods was significantly related to levels of inter-specificcompetition, but not with intra-specific effects under low levelsof overall competition. More than half of the variability inloblolly pine basal area growth under unthinned control andlight thin treatments could be accounted for by competitioneffects. However, only one third of the variability could beexplained for loblolly pine under heavy thin treatment. Forhardwood species, the percentage of growth variation accountedfor by competition was about 45%, and did not change among thethinning treatments. Different resource demands between thetwo categories of tree species and a certain amount of thinningshock were suggested by the modelling results.Copyright 1994,1999 Academic Press Neighbourhood approach, competition index, hardwood, no-interaction model, basal area, reciprocal yield law  相似文献   

9.
Summary The macronutrient variation within four 6 year oldEucalyptus saligna and four 5 year oldE. wandoo growing on rehabilitated bauxite pits was determined. Significant differences in mean nutrient concentrations were generally recorded between good soil condition sites and poor soil sites, between tree individuals, branch height, and plant organ type; but mean nutrient values were not different among canopy aspects. Fully expanded leaves of the current year provided the most uniform nutrient levels among the plant organs and showed major differences between sites with good soil nutrient conditions and those with poor conditions. Differences in foliar and branch levels of N, P, K, Ca and Mg, the variation between sites, canopy heights and plant organ types, and the use of foliar nutrient levels to indicate deficiencies are discussed.  相似文献   

10.
11.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

12.
The goal of this study was to determine how increased nutrient availability affects foliage morphology of loblolly pine (Pinus taeda L.) without introducing the confounding influence of light availability. Morphology of fascicles from the terminal leader (radius, length, specific needle area, density, and needles per fascicle) and terminal leader traits (length, foliated length, total leaf area, and total fascicles) were measured for different aged (ranged from 5-year-old to 12-year-old) loblolly pine stands growing on the Piedmont and lower Coastal Plain of Georgia, USA. A factorial combination of annual fertilization and complete interspecific competition control was applied as stand level treatments. Competition control and stand age generally did not affect fascicle morphology. In contrast, annual fertilization significantly increased fascicle length (5%), needles per fascicle (4%), and total leaf area of the terminal (18%), while decreasing specific needle area (4%). Fertilization also increased terminal leader growth (5%) and total number of fascicles (6%). Therefore, loblolly pine foliage morphology does have plasticity to respond to increased nutrient availability. However, the magnitude of these morphological changes is small compared to changes in total canopy leaf area.  相似文献   

13.
The effects of ferulic acid on the mineral nutrition of grain sorghum   总被引:2,自引:0,他引:2  
The combined effects of whole-tree harvesting (WTH) and soil leaching by both acid deposition and naturally-produced carbonic acid were evaluated in a mixed oak and a loblolly pine forest growing on similar soils in the Ridge and Valley province of eastern Tennessee. It was hypothesized that nutrient export via WTH would be greater in a mixed oak stand than in the loblolly pine stand because of greater nutrient concentrations in oak and hickory species than in pine. This hypothesis was true for N,P, and particularly Ca at the time of harvest, but not for K or Mg. When expressed on an annual basis, exports of N,P,K, and Mg were greater in the loblolly pine site and only Ca export was greater in the mixed oak site. It was also hypothesized that the large accumulation of Ca in the oak and hickory vegetation would cause lower exchangeable Ca2+ in soils, and, consequently, lower Ca2+ leaching in the mixed oak site than in the loblolly pine site. This hypothesis was supported by the data, which indicated 340–370% more exchangeable Ca and 100% more Ca2+ leaching in the loblolly pine site than in the mixed oak site. Research sponsored by the U.S. Environmental Protection Agency under Interagency Agreement No. 79-D-X0533 and Biofuels and Municipal Waste Technology Division, U.S. Department of Energy, under Contract No. De-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. Publication No. 2933, Environmental Sciences Division, ORNL.  相似文献   

14.
The effects of water stress on growth and water relations of loblolly and white pine seedlings were studied during series of drying cycles. As mean soil water potential decreased, growth of roots, needles, and buds decreased. Growth of roots during successive severe drying cycles was not uniform, however. A study of needle and root extension showed that of the total growth of roots for 3 7-day drying cycles, only 6% occurred during the third cycle, while needle extension was uniform for the 3 cycles. The difference in response of needles and roots to drying cycles may be attributed primarily to the effect of water stress on the growing region. When subjected to a severe stress, roots matured toward the tip and became dormant, resulting in less growth during subsequent drying cycles. The intercalary growing region of needles, however, was not altered seriously enough by the stress to cause a difference in amount of growth during each drying cycle.

Transpiration of loblolly pine was lower in the second drying cycle than in the first. Needle water potential after rewatering was as high as that of control plants watered daily; root resistance was apparently not important in restricting transpiration during a second drying cycle. Needle diffusion resistance of loblolly pine, measured with a low-resistance diffusion porometer, was slightly higher during the second drying cycle than during the first. In addition, many primary needles were killed during the first period of stress. These factors contributed to the reduction of transpiration during the second drying cycle. Diffusion resistance of Coleus increased and transpiration ceased during the first drying cycle while water potential remained relatively high. After rewatering, both leaf resistance and transpiration returned to the control level, presumably because the stress during the first period of drying was not severe. The diffusion resistances observed for well-watered plants were 30 to 50 sec·cm−1 for loblolly pine, 3 to 5 sec·cm−1 for Coleus, and 4 to 6 sec·cm−1 for tomato. These values agree closely with those reported by other workers.

  相似文献   

15.
Shortleaf pine (n = 93) and loblolly pine (n = 112) trees representing 22 seed sources or 16 physiographic populations were sampled from Southwide Southern Pine Seed Source Study plantings located in Oklahoma, Arkansas, and Mississippi. The sampled trees were grown from shortleaf pine and loblolly pine seeds formed in 1951 and 1952, prior to the start of intensive forest management across their native ranges. Amplification fragment length polymorphism (AFLP) markers were developed and used to study genetic diversity and its structure in these pine species. After screening 48 primer pairs, 17 and 21 pairs were selected that produced 794 and 647 AFLPs in shortleaf pine and loblolly pine, respectively. High-AFLP-based genetic diversity exists within shortleaf pine and loblolly pine, and most (84.73% in shortleaf pine; 87.69% in loblolly pine) of this diversity is maintained within physiographic populations. The high value of unbiased measures of genetic identity and low value of genetic distance for all pairwise comparisons indicates that the populations have similar genetic structures. For shortleaf pine, there was no significant correlation between geographic distance and genetic distance (r = 0.28), while for loblolly pine there was a weak but significant correlation (r = 0.51).  相似文献   

16.
Summary Seasonal changes in the foliar concentration of macronutrients (N, P, K, Ca and Mg) in sapling trees ofEucalyptus saligna Sm. andE. wandoo Blakely growing in rehabilitated bauxite mined areas in the Darling Range of Western Australia are described. Foliar N concentration decreased with age of the fully expanded leaf tissue. Leaf N concentrations were also high when rates of litter decomposition were expected to be high during the period of early spring. The greatest foliar N difference between trees growing in good soil conditions and those from poorer soil conditions also occurred during this period. Levels of P in leaves were highest in young developing leaves but once the leaves reached full size, no seasonal trend in P concentration was observed. Foliar K was lower during the winter and probably related to the period of maximum leaching by precipitation. High foliar K during summer, however, could be related to the role of K in lowering cellular water potential. Leaf Ca was highest during early sping. Low mobility of cellular Ca during the cool portion of the year was indicated. Foliar Mg showed a weak pattern of decreasing concentration with leaf age. The best season for sampling for these broadleafed evergreen species to provide information on plant nutrient status appears to be in spring.  相似文献   

17.
The Nantucket pine tip moth, Rhyaciona frustrana (Comstock), a common regeneration pest of loblolly pine, Pinus taeda L., has been shown to reduce tree volume yields through larval feeding. Chemical applications can be effective in protecting trees from the growth losses associated with this feeding, and optimum spray timing values are commonly used to reduce the number of necessary applications and to increase insecticide efficacy. Optimal spray timing values for the Georgia Piedmont were obtained for the following four insecticides available for use in loblolly pine plantations: permethrin (Pounce), lambda-cyhalothrin (Warrior T), spinosad (SpinTor 2 SC), and Bacillus thuringiensis variety kurstaki Berliner (Foray 48B). Optimal timing values were similar between the first and second generations for each of these compounds. All of the insecticides used in this study significantly reduced tip moth damage below the control treatment levels. Lambda-cyhalothrin was the most efficacious and had the longest spray timing window. B. thuringiensis was the least effective and had the shortest timing window. Spinosad and permethrin were similar in efficacy and spray timing values. This information is applicable to regions where there are three tip moth generations per year, as found in the southern Piedmont region and the coastal plain of Virginia and most of North Carolina.  相似文献   

18.
Summary The inheritance of organelle DNAs in loblolly pine was studied by using restriction fragment length polymorphisms. Chloroplast DNA from loblolly pine is paternally inherited in pitch pine x loblolly pine hybrids. Mitochondrial DNA is maternally inherited in loblolly pine crosses. The uniparental inheritance of organelle genomes from opposite sexes within the same plant appears to be unique among those higher plants that have been tested and indicates that loblolly pine, and possibly other conifers, must have special mechanisms for organelle exclusion or degradation or both. This genetic system creates an exceptional opportunity for the study of maternal and paternal genetic lineages within a single species.  相似文献   

19.
MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.  相似文献   

20.
Summary A culture medium that can efficiently produce mature somatic embryos was developed for loblolly pine (Pinus taeda L.). The medium contained maltose as a carbohydrate source and polyethylene glycol as an osmoticum. This medium formulation significantly enhanced embryo maturation efficiency compared to a medium with only maltose, or with sucrose combined with polyethylene glycol. Maltose at 4% and polyethylene glycol at 6% resulted in the highest embryo maturation efficiency; an average of around 100 cotyledonary embryos were produced from 1 g of embryogenic tissue. These results suggested that previous ineffective embryo maturation in loblolly pine may be due to the lack of the proper combination of osmoticum and carbohydrate source. This embryo maturation method also improved morphology of cotyledonary embryos of loblolly pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号