首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In skeletal myogenic differentiation, myoblasts fuse with myogenic cells spontaneously, but do not fuse with non-myogenic cells either in vivo or in vitro, suggesting that the fusion of myoblasts with non-myogenic cells is unsuitable for differentiation. To understand the inevitability of the fusion among myoblasts, we prepared heterokaryons in crosses between quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and rodent non-myogenic cells, such as tumor cells, fibroblasts, or neurogenic cells by HVJ (Sendai virus) and examined how myogenic differentiation was influenced in the prepared heterokaryons, focusing on myogenin expression and myofibril formation as markers of differentiation. When presumptive QM-RSV cells were fused with non-myogenic cells by HVJ and induced to differentiate, both myogenin expression and myofibril formation were suppressed. When myotubes of QM-RSV cells that had already expressed myogenin and formed myofibrils were fused with non-myogenic cells, both myogenin and myofibrils disappeared. Especially, fibrous structures of myofibrils were significantly lost and dots or aggregations of F-actin were formed within 24 hr after formation of heterokaryons. However, the fusion of presumptive or differentiated QM-RSV cells with rodent myoblasts did not disturb myogenin expression or myofibril formation. These results suggest that mutual fusion of myoblasts is indispensable for normal myogenic differentiation irrespective of the species, and that some factors inhibiting myogenic differentiation exist in the cytoplasm of non-myogenic cells, but not in myoblasts.  相似文献   

2.
It has been shown previously that heterokaryons between myoblasts and non-myogenic cells disturb myogenic differentiation (Hirayama et al. (2001); Cell Struct. Funct. 26, 37-47), suggesting that some myogenesis inhibitory factors exist in non-myogenic cells. Skeletal myoblasts and adipose cells are derived from a common mesodermal stem cell, indicating that both cells have a closer relationship in the developmental lineage than the other somatic cells. To investigate the functional relationship between myoblasts and adipose cells, heterokaryons between quail myoblasts and 3T3-L1 cells, a mouse preadipocyte cell line, were prepared and examined for characteristics of myogenic differentiation. Myogenic differentiation was inhibited in the heterokaryons between quail myoblasts and well-differentiated (adipocytes) 3T3-L1 cells. On the contrary, normal myogenic differentiation proceeded in the heterokaryons between quail myoblasts and undifferentiated (preadipocytes) 3T3-L1 cells. Further investigation showed that the mouse myogenin gene from 3T3-L1 cells was transactivated in the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells. The results demonstrated that undifferentiated 3T3-L1 cells have no myogenesis inhibitory factors but acquire these during terminal differentiation into adipocytes.  相似文献   

3.
Skeletal muscle cells and adipose cells have a close relationship in developmental lineage. Our previous study has shown that the heterokaryons between quail myoblasts and undifferentiated 3T3-L1 cells (preadipocytes) normally differentiated into myotubes, whereas the heterokaryons between myoblasts and differentiated 3T3-L1 cells (adipocytes) failed myogenic differentiation. These results suggest differences between preadipocytes and adipocytes. The purpose of this study was to clarify whether preadipocytes have flexibility in differentiation before terminal adipose differentiation. Presumptive quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) and mouse 3T3-L1 cells (either preadipocytes or adipocytes) were co-cultured for 48 h under conditions allowing myogenic differentiation. On co-culture between myoblasts and undifferentiated 3T3-L1 cells, heterokaryotic myotubes formed spontaneously, but not on co-culture with differentiated 3T3-L1 cells. In addition, the heterokaryotic myotubes expressed mouse myogenin derived from the 3T3-L1 cell gene. Our previous study indicated that the fusion sensitivity of differentiating myoblasts change with decreasing cholesterol of the cell membrane during myoblast fusion. Thus we compared the level of membrane cholesterol between undifferentiated and differentiated 3T3-L1 cells. The result showed that the level of membrane cholesterol in 3T3-L1 cells increases during adipose differentiation. Corresponding to the increase in membrane cholesterol content, differentiated 3T3-L1 cells had lower sensitivity to HVJ (Sendai virus)-mediated cell fusion than undifferentiated 3T3-L1 cells. This study demonstrated that 3T3-L1 cells at an undifferentiated state have a capacity for spontaneous fusion with differentiating myoblasts following myogenic differentiation, and that the capacity is lost after terminal adipose differentiation.  相似文献   

4.
Primary skeletal muscle myoblasts have a limited proliferative capacity in cell culture and cease to proliferate after several passages. We examined the effects of several oncogenes on the immortalization and differentiation of primary cultures of rat skeletal muscle myoblasts. Retroviruses containing a SV40 large T antigen (LT) gene very efficiently immortalize myogenic cells. The immortalized cell lines retain a very high differentiation capacity and form, in the appropriate culture conditions, a very dense network of muscle fibers. As in primary culture, cell fusion is associated with the synthesis of large amounts of muscle-specific proteins. However, unlike normal myoblasts (and previously established myogenic cell lines), nuclei in the multinucleated fibers of SV40-immortalized cells synthesize DNA and enter mitosis. Thus, withdrawal from DNA synthesis is not obligatory for cell fusion and biochemical differentiation. Using a retrovirus coding for a temperature-sensitive SV40 LT, myogenic cell lines were produced in which the SV40 LT could be inactivated by a shift from 33 degrees C to 39 degrees C. The inactivation of LT induced massive cell fusion and synthesis of muscle proteins. The nuclei in those fibers did not synthesize DNA, nor did they undergo mitosis. This approach enabled the reproducible establishment of myogenic cell lines from very small populations of myoblasts or single primary myogenic clones. Activated p53 also readily immortalized cells in primary muscle cultures, however the cells of eight out of the nine cell lines isolated had a fibroblastic morphology and could not be induced to form multinucleated fibers.  相似文献   

5.
The metabolism of gangliosides was studied during the in vitro differentiation of both normal quail myoblasts and myoblasts which have been transformed by a temperature-sensitive mutant of Rous sarcoma virus (RSV). These transformed cells can be maintained undifferentiated if incubated at 35 degrees C, but they will differentiate when shifted to 41 degrees C. (D. Montarras and M. Y. Fiszman (1983) J. Biol. Chem. 258, 3882-3888). The analysis of [14C]Glucosamine-labeled gangliosides by two-dimensional thin-layer chromatography reveals variations in the metabolism of the gangliosides during the process of differentiation. During the formation of myotubes, it was observed that the accumulation of GD1a is reduced, while the accumulation of GD3 is increased. Therefore, this results in the variation of the ratio GD3/GD1a which increases from 1.8 to 25 in the case of clones of transformed myoblasts, and from 0.5 to 1.7 in the case of uninfected myoblasts. These variations which have been observed seem to be specific of the myogenic differentiation since they cannot be reproduced when differentiation is inhibited by BUdR treatment or when fibroblasts reach confluency and are blocked in the G1 phase of cell cycle. Furthermore, the transformed myoblasts in vitro are shown to be a good model system since their gangliosides composition is very similar to that of muscle cells in vivo.  相似文献   

6.
Summary The migratory and organogenetic capacities of muscle cells at different stages of differentiation were tested in heterospecific chick/quail recombinants. Grafts containing muscle cells were taken from the premuscular masses from 4- to 5-day quail embryos, from the limb or trunk muscles of 12-day embryonic and 4-day post-natal quails, and from experimentally produced bispecific premuscular masses in which the myoblasts are of quail origin and the connective tissue cells of chick origin. Grafts were implanted into 2-day chick embryos in place of the somitic mesoderm at the limb level. Hosts were examined 4 to 7 days after operation.After implantation of a piece of premuscular mass, quail cells were found at and around the site of the graft in the truncal region and within the limb as far as the autopod. Quail cells participated predominantly in the trunk and limb musculature, which contained a number of quail myotubes and of bispecific quail/chick myotubes. Apart from skeletal muscles, quail cells contributed sporadically to nerve envelopes and blood vessel walls in the limb.When the graft was of bispecific constitution, quail nuclei in the limb and the trunk were found exclusively in monospecific and bispecific myotubes.After implantation of differentiated embryonic or post-natal muscle tissue, quail cells in the limb contributed only sporadically to nerve envelopes and blood vessel walls, while in the trunk they also participated in the formation of muscles and tendons.It is concluded that the myogenic cells in 4 to 5-day quail premuscular masses are still able to undergo an extensive migration into the limb buds and there participate in the formation of myotubes and anatomically normal muscles. They display developmental potentialities equivalent to those of the somitic myogenic stem cells. These capacities are lost in 12-day embryonic muscles.  相似文献   

7.
Synthesis of heat-shock proteins by cells undergoing myogenesis   总被引:11,自引:0,他引:11       下载免费PDF全文
Subjecting 24-h-old cultures of quail myoblasts to incubation at an elevated temperature causes the pattern of protein synthesis to shift from the production of a broad spectrum of different proteins to the enhanced synthesis of a small number of heat-shock proteins. The synthesis of four major heat-induced polypeptides with Mrs of 88,000, 82,000, 64,000 and 25,000 achieve levels comparable to that of the major structural protein, actin. Two-dimensional electrophoretic separation and fluorographic analysis of these polypeptides establish that those with Mrs of 94,000, 88,000, 82,000, and 64,000 and pIs of 5.1, 5.2, 5.2, and 5.4, respectively, are synthesized by heat-shocked as well as by control (albeit not as intense) cultures. However, the synthesis of polypeptides with Mrs of 94,000, 64,000, and 25,000 and pI's of 5.2, 5.8, and 5.4, respectively, is detectable only in myoblasts shifted to a higher temperature. Recovery of heat-shocked myoblasts, to a normal preinduction pattern of polypeptide synthesis, takes approximately 8 h. Similar studies, completed in older, more differentiated myogenic cells, demonstrated that as cells progress through myogenesis their ability to respond to a similar temperature shift is diminished. The synthesis of some myoblastlike heat-shock proteins by fusing of cells or by myotubes requires that they be maintained at an elevated temperature at least twice as long as myoblasts. This observation and the demonstration that heat-shocked myotubes do not synthesize detectable levels of the 25,000-dalton polypeptide found in heat-shocked myoblasts, suggest that the synthetic response of myogenic cells to heat shock is dependent on the differentiative state of these cells.  相似文献   

8.
The influence of external diffusible factors on the terminal differentiation of cells of the myogenic line L6 has been studied. The cultures were fed either with medium which had been depleted of mitogenic factors by previous incubation in the presence of myogenic cells, or with standard medium to which proteins secreted by myoblasts had been added. We present evidence that the length of the proliferative phase of the cultures is largely dependent upon environmental cues. However, by inhibiting DNA replication by a variety of means during this phase, we show that in order to differentiate, DNA synthesis is needed for myogenic cells of this line.Once the myoblasts have initiated their last presumptive round of DNA synthesis, they cannot be induced to undergo further DNA replication by environmental factors. Cloning experiments showed that, at this time, the cells lose their proliferative capacity. Our data strongly suggest that, at this stage, cells of line L6 become irreversibly committed for differentiation. The fusion rate of the committed myoblasts could be significantly increased by proteins secreted by proliferating myogenic cells, but not by those secreted by myotubes.  相似文献   

9.
The synthesis of two components of the basal lamina, laminin and type IV collagen, and their extracellular deposition on the surface of myotubes was studied in cultures of embryonic mouse and quail skeletal muscle cells and in the rat myoblast cell line L6. Production of type IV collagen and laminin by myoblasts and muscle fibroblasts was demonstrated by incorporation of radioactive amino acids into proteins and by immunoprecipitation with specific antibodies and electrophoretic analysis of labeled proteins. Immunofluorescence staining experiments revealed strong intracellular reactions with antibodies to laminin and type IV collagen in mononucleated myogenic and fibrogenic cells. Cells of fibroblast-like morphology showed a more intense staining than bipolar, spindle-shaped cells which perhaps represented postmitotic myoblasts. Myotubes did not show detectable intracellular staining. The formation of a basal lamina on myotubes was indicated by the deposition of laminin and type IV collagen on the surface of myotubes as viewed by immunofluorescence examination of unfixed cells. Staining for extracellular laminin was stronger in mass cultures than in myogenic clones, suggesting that secretion and deposition of components of the basal lamina on the myotube surface are complex processes which may involve cooperation between myogenic and fibrogenic cells.  相似文献   

10.
In cell cultures of quail, chick, or mouse skeletal muscle, both myogenic and fibrogenic cells synthesize and secrete type-IV collagen, a major structural component of the basal lamina. Type-IV collagen, together with laminin, forms characteristic patches and strands on the surface of developing myotubes, marking the onset of basement-membrane formation. The pattern for type-IV collagen and laminin is unique to these proteins and is not paralleled by other matrix proteins, such as fibronectin or type-I or -III collagen. In the present study, we used species-specific antibodies to either mouse or chick type-IV collagen to demonstrate the ability of fibroblast--derived type-IV collagen to incorporate in the basal lamina of myotubes. In combination cultures of embryonic quail skeletal myoblasts and mouse muscle fibroblasts, antibodies specific for mouse type-IV collagen revealed the deposition of type-IV collagen on the surface of quail myotubes in the pattern typical of the beginning of basement-membrane formation. Control cultures consisting of only quail muscle cells containing myoblasts and fibroblasts demonstrated no such reaction with these antibodies. Deposits of mouse type-IV collagen were also observed on the surface of quail myotubes when conditioned medium from mouse muscle fibroblasts was added to quail myoblast cultures. Similarly, in combination cultures of mouse myoblasts and chick muscle fibroblasts, chick type-IV-collagen deposits were identified on the surface of mouse myotubes. These results indicate that type-IV collagen synthesized by muscle fibroblasts may be incorporated into the basal lamina forming on the plasmalemma of myotubes, and may explain ultrastructural studies by Lipton on the contribution of fibroblasts to the formation of basement membranes in skeletal muscle.  相似文献   

11.
Summary Quail myoblasts were maintained in an undifferentiated state by first blocking differentiation with 5-bromodeoxyuridine and then reversing the block in the presence of phorbol-12-myristate-13-acetate. The synthesis of quail skeletal myosin light chain 1 is induced in heterokaryons formed by fusing these undifferentiated quail myoblasts to differentiated chick myocytes. These results extend observations previously obtained using an established line of rat myoblasts and indicate that the induction is a result of regulatory interactions present in normal diploid cells. This work was supported by grants from the Muscular Dystrophy Association and the National Institutes of Health.  相似文献   

12.
We show that a single myogenic progenitor cell in vitro generates two types of myoblasts committed to two distinct myogenic cell lineages. Using fast and slow myosin heavy chain isoform content to define myotube type, we found that myogenic cells from fetal quail (day 10 in ovo) formed two types of myotubes in vitro: fast and mixed fast/slow. Clonal analysis showed that these two types of myotubes were formed from two types of myoblasts committed to distinct fast and fast/slow lineages. Serial subcloning demonstrated that the initial myoblast progeny of an individual myogenic progenitor cell were in the fast lineage, whereas later progeny were in the fast/slow lineage. Fast and slow myosin expression within particular myotubes reflects the genetic processes underlying myoblast commitment to diverse myogenic lineages.  相似文献   

13.
14.
When chick embryo presumptive muscle cells are transformed at 35 °C with a temperature-sensitive mutant of Rous sarcoma virus, tsLA29, they do not undergo myogenic differentiation. When these cultures are shifted to 41 °C the cells revert to a phenotypically normal state and fuse into myotubes. The synthesis of myosin, the appearance of myosin mRNA active in vitro, and the synthesis of acetylcholinesterase (AChE) were all activated following a shift from 35 °C to 41 °C. The activation of myosin synthesis also occurred in cultures prevented from fusing by calcium deprivation. After myosin synthesis had been initiated at 41 °C, however, it could not be suppressed by shifting the cultures back to 35 °C. [3H]Thymidine labeling and autoradiography demonstrated that DNA synthesis in tsLA29-infected myoblasts ceased within 24 h after the shift to 41°C. A kinetic analysis of the withdrawal of these cells from the cell cycle indicates that at least a fraction of the cells do not need to traverse a complete cell cycle prior to terminal differentiation.  相似文献   

15.
The biosynthesis and accumulation of the myosin heavy chain (MHC) peptide has been examined in embryonic chick skeletal muscle cultures under conditions of normal or arrested cell fusion. When compared with primary chick fibroblasts, the myogenic cells accumulated significantly more MHC, even while mononucleated. Electron microscopy of the fusion-blocked cultures revealed the presence of myosinlike thick filaments in the myoblasts. It is concluded that cell fusion is not a prerequisite for myosin accumulation or myofilament assembly during embryonic chick muscle differentiation.  相似文献   

16.
《The Journal of cell biology》1994,125(6):1275-1287
The transplantation of cultured myoblasts into mature skeletal muscle is the basis for a new therapeutic approach to muscle and non-muscle diseases: myoblast-mediated gene therapy. The success of myoblast transplantation for correction of intrinsic muscle defects depends on the fusion of implanted cells with host myofibers. Previous studies in mice have been problematic because they have involved transplantation of established myogenic cell lines or primary muscle cultures. Both of these cell populations have disadvantages: myogenic cell lines are tumorigenic, and primary cultures contain a substantial percentage of non-myogenic cells which will not fuse to host fibers. Furthermore, for both cell populations, immune suppression of the host has been necessary for long-term retention of transplanted cells. To overcome these difficulties, we developed novel culture conditions that permit the purification of mouse myoblasts from primary cultures. Both enriched and clonal populations of primary myoblasts were characterized in assays of cell proliferation and differentiation. Primary myoblasts were dependent on added bFGF for growth and retained the ability to differentiate even after 30 population doublings. The fate of the pure myoblast populations after transplantation was monitored by labeling the cells with the marker enzyme beta-galactosidase (beta-gal) using retroviral mediated gene transfer. Within five days of transplantation into muscle of mature mice, primary myoblasts had fused with host muscle cells to form hybrid myofibers. To examine the immunobiology of primary myoblasts, we compared transplanted cells in syngeneic and allogeneic hosts. Even without immune suppression, the hybrid fibers persisted with continued beta-gal expression up to six months after myoblast transplantation in syngeneic hosts. In allogeneic hosts, the implanted cells were completely eliminated within three weeks. To assess tumorigenicity, primary myoblasts and myoblasts from the C2 myogenic cell line were transplanted into immunodeficient mice. Only C2 myoblasts formed tumors. The ease of isolation, growth, and transfection of primary mouse myoblasts under the conditions described here expand the opportunities to study muscle cell growth and differentiation using myoblasts from normal as well as mutant strains of mice. The properties of these cells after transplantation--the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity-- suggest that studies of cell-mediated gene therapy using primary myoblasts can now be broadly applied to mouse models of human muscle and non-muscle diseases.  相似文献   

17.
18.
《The Journal of cell biology》1984,99(5):1856-1866
We have addressed the problem of the segregation of cell lineages during the development of cartilage and muscle in the chick limb bud. The following experiments demonstrate that early limb buds consist of at least two independent subpopulations of committed precursor cells-- those in (a) the myogenic and (b) the chondrogenic lineage--which can be physically separated. Cells obtained from stage 20, 21, and 22 limb buds were cultured for 5 h in the presence of a monoclonal antibody that was originally isolated for its ability to detach preferentially myogenic cells from extracellular matrices. The detached limb bud cells were collected and replated in normal medium. Within 2 d nearly all of the replated cells had differentiated into myoblasts and myotubes; no chondroblasts differentiated in these cultures. In contrast, the original adherent population that remained after the antibody-induced detachment of the myogenic cells differentiated largely into cartilage and was devoid of muscle. Rearing the antibody-detached cells (i.e., replicating myogenic precursors and postmitotic myoblasts) in medium known to promote chondrogenesis did not induce these cells to chondrify. Conversely, rearing the attached precursor cells (i.e., chondrogenic precursors) in medium known to promote myogenesis did not induce these cells to undergo myogenesis. The definitive mononucleated myoblasts and multinucleated myotubes were identified by muscle- specific antibodies against light meromyosin or desmin, whereas the definitive chondroblasts were identified by a monoclonal antibody against the keratan sulfate chains of the cartilage-specific sulfated proteoglycan. These findings are interpreted as supporting the lineage hypothesis in which the differentiation program of a cell is determined by means of transit through compartments of a lineage.  相似文献   

19.
Mesenchymal cells were isolated from somites and limbs of mouse embryos at different developmental stages. When grown in tissue culture, some of the cells underwent muscle differentiation as indicated by synthesis of sarcomeric myosin, acetylcholine receptor and, in the case of limb cells, fusion into multinucleated myotubes. When the tumour promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) was added to these cultures, it caused differential effects, depending upon the age of the embryo from which cells were isolated. In cultures of somites or limb bud from embryos up to 12 days post coitum, TPA did not interfere with the appearance of differentiated muscle cells. When TPA was added to cultures from older embryos, it inhibited muscle differentiation with an efficiency which increased with the age of the embryo, reaching about 90% inhibition at 15 days. After this period, a new population of myogenic cells appeared in the limb, which were able to differentiate in the presence of TPA and represented the great majority of myoblasts after day 18 of embryonic development. The simplest interpretation of these data can be based on the existence of three major classes of myogenic cell precursors, which appear sequentially during muscle histogenesis: 'early' myoblasts, which appear resistant to tumour promoters; 'late' myoblasts, whose differentiation is inhibited by tumour promoters and 'satellite' cells which, like early myoblasts, show no sensitivity to TPA.  相似文献   

20.
The effects of calcium and temperature on fusion of quail embryonic myoblasts were examined using cells transformed with a temperature-sensitive mutant of Rous sarcoma virus (ts-RSV). The transformed quail myoblasts (QM-RSV) fused to form myotubes at 41 degrees C, the non-permissive temperature, but not at 35.5 degrees C, the permissive temperature. On incubation at 41 degrees C, a period of more than 10 hr was needed for the myoblasts to become fusion-competent, but calcium was not needed for development of fusion-competence. Once the cells had become competent, fusion proceeded even at 35.5 degrees C. These results suggest that the src gene product expressed at 35.5 degrees C may control the fusion of cells in the competent stage by inactivating a component(s) that is associated with fusion-competence. However, fusion of even myoblasts in the competent stage was blocked in calcium-deficient medium, suggesting that calcium is essential for the fusion, probably at a step immediately before membrane union. Unlike fusion, other biochemical processes of differentiation proceeded even in calcium-deficient medium, indicating a distinction of fusion from these other processes during myoblast differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号