首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several algae that were previously classified in the phylum Xanthophyta (yellow-green algae) were assigned in 1971 to a new phylum, Eustigmatophyta. It was anticipated that the number of algae reclassified to Eustigmatophyta would increase. However, due to the fact that the morphological characteristics that segregate eustigmatophytes from other closely related algae can be only obtained through laborious electron microscopic techniques, the number of members in this phylum have increased rather slowly. We attempted, therefore, to segregate two closely related groups of algae, eustigmatophytes and yellow-green algae, on the basis of a molecular phylogenetic tree as a means of providing an alternative method of distinguishing these phyla. We analyzed the mitochondrial cytochrome oxidase subunit I (COXI) gene sequences of eight algae classified as xanthophyceans and found that six manifested the expected deviant genetic code where AUA codes for methionine (AUA/Met), but not for isoleucine (AUA/Ile) as in the universal genetic code. The other two, Monodus sp. (CCMP 505) and Ophiocytium majus (CCAP 855/1), which were presumed to be yellow-green algae, and all the examined eustigmatophytes utilized AUA for Ile. In addition, the phylogenetic tree of COXI gene sequences showed that the six yellow-green algae bearing the AUA/Met deviant code composed a tight clade with a bootstrap value of 100%. The phylogenetic tree of the corresponding sequences from Monodus sp. and Ophiocytium majus and the eustigmatophytes also composed a tight cluster, but with a bootstrap value of 92%. These results strongly suggest that two previously classified members of yellow-green algae belong to the phylum Eustigmatophyta. Therefore, examination of the mitochondrial genetic code in algae appears to be a potentially very useful genetic marker for classifying these organisms, especially when it is considered with the results obtained through a molecular phylogenetic tree. Received: 14 December 1996 / Accepted: 3 April 1997  相似文献   

2.
The phylogenetic relationships of genus Passer (Old World sparrows) have been studied with species covering their complete world living range. Mitochondrial (mt) cyt b genes and pseudogenes have been analyzed, the latter being strikingly abundant in genus Passer compared with other studied songbirds. The significance of these Passer pseudogenes is presently unclear. The mechanisms by which mt cyt b genes become pseudogenes after nuclear translocation are discussed together with their mode of evolution, i.e., transition/transversion mitochondrial ratio is decreased in the nucleus, as is the constraint for variability at the three codon positions. However, the skewed base composition according to codon position (in 1st position the percentage is very similar for the four bases, in 2nd position there are fewer percentage of A and G and more percentage of T, and in 3rd codon position fewer percentage of G and T and is very rich in A and C) is maintained in the translocated nuclear pseudogenes. Different nuclear internal mechanisms and/or selective pressures must exist for explaining this nuclear/mitochondrial differential DNA base evolutive variability. Also, the phylogenetic usefulness of pseudogenes for defining relationships between closely related lineages is stressed. The analyses suggest that the primitive genus Passer species comes from Africa, the Cape sparrow being the oldest: P. hispaniolensis italiae is more likely conspecific to P. domesticus than to P. hispaniolensis. Also, Passer species are not included within weavers or Estrildinae or Emberizinae, as previously suggested. European and American Emberizinae sparrows are closely related to each other and seem to be the earliest species that radiated among the studied songbirds (all in the Miocene Epoch). Received: 29 November 2000 / Accepted: 22 March 2001  相似文献   

3.
Genes with atypical G+C content and pattern of codon usage in a certain genome are possibly of exotic origin, and this idea has been applied to identify horizontal events. In this way, it was postulated that a total of 755 genes in the E. coli genome are relics of horizontal events after the divergence of E. coli from the Salmonella lineage 100 million years ago (Lawrence and Ochman, 1998). In this paper we propose a new way to study sequence composition more thoroughly. We found that although the 755 genes differ in composition from other genes in the E. coli genome, the difference is minor. If we accepted that these genes are horizontally transferred, then (1) it would be more likely that they were transferred from genomes evolutionarily closely related to E. coli; but (2) the dating method used by Lawrence and Ochman (1997, 1998) largely underestimated the average age of introduced sequences in the E. coli genome, in particular, most of the 755 genes should be introduced into E. coli before, instead of after, the divergence of E. coli from the Salmonella lineage. Our study reveals that atypical G+C content and pattern of codon usage are not reliable indicators of horizontal gene transfer events. Received: 27 September 2000 / Accepted: 9 April 2001  相似文献   

4.
The mitochondrial DNA-encoded cytochrome oxidase subunit I (COI) gene and the nuclear DNA-encoded hsp60 gene from the euglenoid protozoan Euglena gracilis were cloned and sequenced. The COI sequence represents the first example of a mitochondrial genome-encoded gene from this organism. This gene contains seven TGG tryptophan codons and no TGA tryptophan codons, suggesting the use of the universal genetic code. This differs from the situation in the mitochondrion of the related kinetoplastid protozoa, in which TGA codes for tryptophan. In addition, a complete absence of CGN triplets may imply the lack of the corresponding tRNA species. COI cDNAs from E. gracilis possess short 5′ and 3′ untranslated transcribed sequences and lack a 3′ poly[A] tail. The COI gene does not require uridine insertion/deletion RNA editing, as occurs in kinetoplastid mitochondria, to be functional, and no short guide RNA-like molecules could be visualized by labeling total mitochondrial RNA with [α-32P]GTP and guanylyl transferase. In spite of the differences in codon usage and the 3′ end structures of mRNAs, phylogenetic analysis using the COI and hsp60 protein sequences suggests a monophyletic relationship between the mitochondrial genomes of E. gracilis and of the kinetoplastids, which is consistent with the phylogenetic relationship of these groups previously obtained using nuclear ribosomal RNA sequences. Received: 5 March 1996 / Accepted: 31 July 1996  相似文献   

5.
The nucleotide sequence for an 11,715-bp segment of the mitochondrial genome of the octocoral Sarcophyton glaucum is presented, completing the analysis of the entire genome for this anthozoan member of the phylum Cnidaria. The genome contained the same 13 protein-coding and 2 ribosomal RNA genes as in other animals. However, it also included an unusual mismatch repair gene homologue reported previously and codes for only a single tRNA gene. Intermediate in length compared to two other cnidarians (17,443 and 18,911 bp), this organellar genome contained the smallest amount of noncoding DNA (428, compared to 1283 and 781 nt, respectively), making it the most compact one found for the phylum to date. The mitochondrial genes of S. glaucum exhibited an identical arrangement to that found in another octocoral, Renilla kolikeri, with five protein-coding genes in the same order as has been found in insect and vertebrate mitochondrial genomes. Although gene order appears to be highly conserved among octocorals, compared to the hexacoral, Metridium senile, few similarities were found. Like other metazoan mitochondrial genomes, the A + T composition was elevated and a general bias against codons ending in G or C was observed. However, an exception to this was the infrequent use of TGA compared to TGG to code for tryptophan. This divergent codon bias is unusual but appears to be a conserved feature among two rather distantly related anthozoans. Received: 27 January 1998 / Accepted: 25 May 1998  相似文献   

6.
We previously reported the sequence of a 9260-bp fragment of mitochondrial (mt) DNA of the cephalopod Loligo bleekeri [J. Sasuga et al. (1999) J. Mol. Evol. 48:692–702]. To clarify further the characteristics of Loligo mtDNA, we have sequenced an 8148-bp fragment to reveal the complete mt genome sequence. Loligo mtDNA is 17,211 bp long and possesses a standard set of metazoan mt genes. Its gene arrangement is not identical to any other metazoan mt gene arrangement reported so far. Three of the 19 noncoding regions longer than 10 bp are 515, 507, and 509 bp long, and their sequences are nearly identical, suggesting that multiplication of these noncoding regions occurred in an ancestral Loligo mt genome. Comparison of the gene arrangements of Loligo, Katharina tunicata, and Littorina saxatilis mt genomes revealed that 17 tRNA genes of the Loligo mt genome are adjacent to noncoding regions. A majority (15 tRNA genes) of their counterparts is found in two tRNA gene clusters of the Katharina mt genome. Therefore, the Loligo mt genome (17 tRNA genes) may have spread over the genome, and this may have been coupled with the multiplication of the noncoding regions. Maximum likelihood analysis of mt protein genes supports the clade Mollusca + Annelida + Brachiopoda but fails to infer the relationships among Katharina, Loligo, and three gastropod species. Received: 9 May 2001 / Accepted: 3 October 2001  相似文献   

7.
Variation in GC content, GC skew and AT skew along genomic regions was examined at third codon positions in completely sequenced prokaryotes. Eight out of nine eubacteria studied show GC and AT skews that change sign at the origin of replication. The leading strand in DNA replication is G-T rich at codon position 3 in six eubacteria, but C-T rich in two Mycoplasma species. In M. genitalium the AT and GC skews are symmetrical around the origin and terminus of replication, whereas its GC content variation has been shown to have a centre of symmetry elsewhere in the genome. Borrelia burgdorferi and Treponema pallidum show extraordinary extents of base composition skew correlated with direction of DNA replication. Base composition skews measured at third codon positions probably reflect mutational biases, whereas those measured over all bases in a sequence (or at codon positions 1 and 2) can be strongly affected by protein considerations due to the tendency in some bacteria for genes to be transcribed in the same direction that they are replicated. Consequently in some species the direction of skew for total genomic DNA is opposite to that for codon position 3. Received: 2 February 1998 / Accepted: 15 June 1998  相似文献   

8.
The light-harvesting complexes (LHCs) are a superfamily of chlorophyll-binding proteins present in all photosynthetic eukaryotes. The Lhc genes are nuclear-encoded, yet the pigment–protein complexes are localized to the thylakoid membrane and provide a marker to follow the evolutionary paths of plastids with different pigmentation. The LHCs are divided into the chlorophyll a/b-binding proteins of the green algae, euglenoids, and higher plants and the chlorophyll a/c-binding proteins of various algal taxa. This work examines the phylogenetic position of the LHCs from three additional taxa: the rhodophytes, the cryptophytes, and the chlorarachniophytes. Phylogenetic analysis of the LHC sequences provides strong statistical support for the clustering of the rhodophyte and cryptomonad LHC sequences within the chlorophyll a/c-binding protein lineage, which includes the fucoxanthin–chlorophyll proteins (FCP) of the heterokonts and the intrinsic peridinin–chlorophyll proteins (iPCP) of the dinoflagellates. These associations suggest that plastids from the heterokonts, haptophytes, cryptomonads, and the dinoflagellate, Amphidinium, evolved from a red algal-like ancestor. The Chlorarachnion LHC is part of the chlorophyll a/b-binding protein assemblage, consistent with pigmentation, providing further evidence that its plastid evolved from a green algal secondary endosymbiosis. The Chlorarachnion LHC sequences cluster with the green algal LHCs that are predominantly associated with photosystem II (LHCII). This suggests that the green algal endosymbiont that evolved into the Chlorarachnion plastid was acquired following the emergence of distinct LHCI and LHCII complexes. Received: 25 February 1998 / Accepted: 13 May 1998  相似文献   

9.
Biased codon usage is common in eukaryotic and prokaryotic genes. Evidence from Escherichia, Saccharomyces, and Drosophila indicates that it favors translational efficiency and accuracy. However, to date no functional advantages have been identified in the codon–anticodon interactions involving the most frequently used (preferred) codons. Here we present evidence that forces not related to the individual codon–anticodon interaction may be involved in determining which synonymous codons are preferred or avoided. We show that the ``off-frame' trinucleotide motif preferences inferrable from Drosophila coding regions are often in the same direction as Drosophila's ``in-frame' codon preferences, i.e., its codon usage. The off-frame preferences were inferred from the nonrandomness of the location of confamilial synonymous codons along coding regions—a pattern often described as a context dependence of nucleotide choice at synonymous positions or as codon-pair bias. We relied on randomizations of the location of confamilial codons that do not alter, and cannot be influenced by, the encoded amino acid sequences, codon usage, or base composition of the genes examined. The statistically significant congruency of in-frame and off-frame trinucleotide preferences suggests that the same kind of reading-frame-independent force(s) may also influence synonymous codon choice. These forces may have produced biases in codon usage that then led to the evolution of the translational advantages of these motifs as preferred codons. Under this scenario, tRNA pool size differences between preferred and nonpreferred codons initially were evolved to track the default overrepresentation of codons with preferred motifs. The motif preference hypothesis can explain the structuring of codon preferences and the similarities in the codon usages of distantly related organisms. Received: 10 November 1998 / Accepted: 23 February 1999  相似文献   

10.
In this work, we present the sequences and a comparison of the glycosomal GAPDHs from a number of Kinetoplastida. The complete gene sequences have been determined for some species (Crithidia fasciculata, Herpetomonas samuelpessoai, Leptomonas seymouri, and Phytomonas sp), whereas for other species (Trypanosoma brucei gambiense, Trypanosoma congolense, Trypanosoma vivax, and Leishmania major), only partial sequences have been obtained by PCR amplification. The structure of all available glycosomal GAPDH genes was analyzed in detail. Considerable variations were observed in both their nucleotide composition and their codon usage. The GC content varies between 64.4% in L. seymouri and 49.5% in the previously sequenced GAPDH gene from Trypanoplasma borreli. A highly biased codon usage was found in C. fasciculata, with only 34 triplets used, whereas in T. borreli 57 codons were employed. No obvious correlation could be observed between the codon usage and either the nucleotide composition or the level of gene expression. The glycosomal GAPDH is a very well-conserved enzyme. The maximal overall difference observed in the amino acid sequences is only 25%. Specific insertions and extensions are retained in all sequences. The residues involved in catalysis, substrate, and inorganic phosphate binding are fully conserved, whereas some variability is observed in the cofactor-binding pocket. The implications of these data for the design of new trypanocidal drugs targeted against GAPDH are discussed. All available gene and amino acid sequences of glycosomal GAPDHs were used for a phylogenetic analysis. The division of the Kinetoplastida into two suborders, Bodonina and Trypanosomatina, was well supported. Within the letter group, the Trypanosoma species appeared to be monophyletic, whereas the other trypanosomatids form a second clade. Received: 23 February 1998/Accepted: 26 March 1998  相似文献   

11.
In this study, we analyzed the correlation between codon usage bias and Shine–Dalgarno (SD) sequence conservation, using complete genome sequences of nine prokaryotes. For codon usage bias, we adopted the codon adaptation index (CAI), which is based on the codon usage preference of genes encoding ribosomal proteins, elongation factors, heat shock proteins, outer membrane proteins, and RNA polymerase subunit proteins. To compute SD sequence conservation, we used SD motif sequences predicted by Tompa and systematically aligned them with 5′UTR sequences. We found that there exists a clear correlation between the CAI values and SD sequence conservation in the genomes of Escherichia coli, Bacillus subtilis, Haemophilus influenzae, Archaeoglobus fulgidus, Methanobacterium thermoautotrophicum, and Methanococcus jannaschii, and no relationship is found in M. genitalium, M. pneumoniae, and Synechocystis. That is, genes with higher CAI values tend to have more conserved SD sequences than do genes with lower CAI values in these organisms. Some organisms, such as M. thermoautotrophicum, do not clearly show the correlation. The biological significance of these results is discussed in the context of the translation initiation process and translation efficiency. Received: 22 June 2000 / Accepted: 18 October 2000  相似文献   

12.
Synonymous codon usage in related species may differ as a result of variation in mutation biases, differences in the overall strength and efficiency of selection, and shifts in codon preference—the selective hierarchy of codons within and between amino acids. We have developed a maximum-likelihood method to employ explicit population genetic models to analyze the evolution of parameters determining codon usage. The method is applied to twofold degenerate amino acids in 50 orthologous genes from D. melanogaster and D. virilis. We find that D. virilis has significantly reduced selection on codon usage for all amino acids, but the data are incompatible with a simple model in which there is a single difference in the long-term N e, or overall strength of selection, between the two species, indicating shifts in codon preference. The strength of selection acting on codon usage in D. melanogaster is estimated to be |N e s|≈ 0.4 for most CT-ending twofold degenerate amino acids, but 1.7 times greater for cysteine and 1.4 times greater for AG-ending codons. In D. virilis, the strength of selection acting on codon usage for most amino acids is only half that acting in D. melanogaster but is considerably greater than half for cysteine, perhaps indicating the dual selection pressures of translational efficiency and accuracy. Selection coefficients in orthologues are highly correlated (ρ= 0.46), but a number of genes deviate significantly from this relationship. Received: 20 December 1998 / Accepted: 17 February 1999  相似文献   

13.
Class 1 eukaryotic release factor 1 (eRF1) recognizes all three stop codons (UAA, UAG, and UGA) in standard-code organisms. In some ciliates with variant genetic codes, one or two stop codons are used to encode amino acids and are not recognized by eRF1; e.g., UAA and UAG are reassigned to Gln in Stylonychia and UGA is reassigned to Cys in Euplotes. Stop codon recognition is due to the N-terminal domain of eRF1 in standard-code organisms. Since variant-code ciliates most likely originate from universal-code ancestors, the N-domain sequence of their eRF1 was assumed to harbor the residues that are responsible for the changes in stop codon recognition specificity. To identify the N-domain regions determining the UGA-only specificity of Euplotes aediculatus eRF1, chimeric proteins were constructed by swapping various N-domain fragments of the E. aediculatus for their human counterparts; the MC domain was from human eRF1. Functional analysis of the chimeric eRF1 in vivo revealed two regions (residues 38–50 and 123–145) restricting the E. aediculatus eRF1 specificity to UAR. The change in stop codon recognition specificity of eRF1 was regarded as the first step in the origin of the variant genetic code in ciliates.  相似文献   

14.
Summary The cytochrome c oxidase subunit I (COI) gene sequences from planarian (Dugesia japonica) DNA, most probably of mitochondrial origin, are heterogeneous. Taking advantage of the heterogeneity that occurs primarily in silent sites of the COI DNA sequences, amino acid assignments of several codons have been deduced as nonuniversal: UGA = Trp, AAA = Asp, and AGR (R: A or G) = Ser. In addition, UAA, a stop codon in the universal genetic code, is tentatively assumed to be a tyrosine codon, because three of the sequences examined have UAA at the well-conserved tyrosine site of UAY (Y: U or C) in other planarian sequences as well as in the mitochondria of human, Xenopus, sea urchin, Drosophila, Trypanosoma, and Saccharomyces cerevisiae. AUA would most probably be an isoleucine codon in these mitochondria, whereas it is a methionine codon in the majority of nonplant mitochondria.Offprint requests to: Y. Bessho  相似文献   

15.
The most generally applicable procedure for obtaining estimates of the symmetrical, or strand-nonspecific, directional mutation pressure (μD) on protein-coding DNA sequences is to determine the G+C content at synonymous codon sites (P syn), and to divide P syn by twice the arithmetic mean of the G+C content at synonymous codon sites of a large number of randomly generated, synonymously coding DNA sequences (P syn). Unfortunately, the original procedure yields biased estimates of P syn and μD and is computationally expensive. We here present a fast procedure for estimating unbiased μD values. The procedure employs direct calculation of P syn (≈P syn) and two normalization procedures, one for P synP syn and another for P synP syn. The normalization removes a bias sometimes caused by codons specifying arginine, asparagine, isoleucine, and leucine. Consequently, comparison of protein-coding genes that are translated using different genetic codes is facilitated. Received: 5 May 1995 / Accepted: 30 November 1995  相似文献   

16.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

17.
Mycobacterium tuberculosis and Mycobacterium leprae are the ethiological agents of tuberculosis and leprosy, respectively. After performing extensive comparisons between genes from these two GC-rich bacterial species, we were able to construct a set of 275 homologous genes. Since these two bacterial species also have a very low growth rate, translational selection could not be so determinant in their codon preferences as it is in other fast-growing bacteria. Indeed, principal-components analysis of codon usage from this set of homologous genes revealed that the codon choices in M. tuberculosis and M. leprae are correlated not only with compositional constraints and translational selection, but also with the degree of amino acid conservation and the hydrophobicity of the encoded proteins. Finally, significant correlations were found between GC3 and synonymous distances as well as between synonymous and nonsynonymous distances. Received: 30 October 1998 / Accepted: 16 August 1999  相似文献   

18.
We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection. Received: 10 November 1998 / Accepted: 28 January 1999  相似文献   

19.
The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo‐CTSB) which containing several in‐frame stop codons throughout the coding sequence. We provide evidences, based on 3′‐RACE method and Western blot, that the Eo‐CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo‐CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.  相似文献   

20.
Base composition is not uniform across the genome of Drosophila melanogaster. Earlier analyses have suggested that there is variation in composition in D. melanogaster on both a large scale and a much smaller, within-gene, scale. Here we present analyses on 117 genes which have reliable intron/exon boundaries and no known alternative splicing. We detect significant heterogeneity in G+C content among intron segments from the same gene, as well as a significant positive correlation between the intron and the third codon position G+C content within genes. Both of these observations appear to be due, in part, to an overall decline in intron and third codon position G+C content along Drosophila genes with introns. However, there is also evidence of an increase in third codon position G+C content at the start of genes; this is particularly evident in genes without introns. This is consistent with selection acting against preferred codons at the start of genes. Received: 24 February 1997 / Accepted: 10 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号