首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of melanoblasts in normally pigmented and dominant spotting (W) embryos was followed by in situ hybridisation to TRP-2/DT mRNA, which labels migratory melanoblasts from 10 days post coitum. Numerous melanoblasts migrate to the inner ear around 11 days. In contrast, few migratory melanoblasts are associated with the eye or skin at this stage and melanoblast distribution within the trunk and tail is patchy. The distribution of melanoblasts in 10.5–11-day-old Wv/Wv, Wsh/Wsh and W41/W41 mutants was similar to that in controls but melanoblast density was lower and by 12 days was severely reduced. These results suggest that mutations of the c-kit receptor tyrosine kinase encoded at the W locus do not alter early migration or differentiation of melanoblasts but severely affect melanoblast survival.  相似文献   

2.
We have cloned and sequenced mouse cDNAs corresponding to a third member of a family of melanocyte-specific mRNAs, which encode tyrosinase and related proteins. This new member, tyrosinase-related protein-2 (TRP-2), has approximately 40% amino acid identity with the two other proteins in the family and has the same structural features including two copper binding sites, two cysteine-rich regions, a signal peptide and a transmembrane domain. We now show that one of the cysteine-rich regions in this protein family is an 'EGF-like' repeat found in many extracellular and cell surface proteins. The gene encoding TRP-2 maps to mouse chromosome 14, in the region of the coat colour mutation slaty. We show that the TRP-2 of slaty mice has a single amino acid difference from wild-type TRP-2; a substitution of glutamine for arginine in the first copper binding site. TRP-2 is the much sought melanogenic enzyme DOPAchrome tautomerase (DT), which catalyses the conversion of DOPAchrome to 5,6,dihydroxyindole-2-carboxylic acid. Extracts from mice homozygous for the slaty mutation have a 3-fold or more reduction in DT activity, indicating that TRP-2/DT is encoded at the slaty locus, and the missense mutation reduces but does not abolish the enzyme activity.  相似文献   

3.
Through the use of dermal-epidermal recombination methods a competition between mouse embryo melanoblasts of the genotype Wv/w C/C, w/w c/c, Sld/sl C/C and sl/sl c/c was established. Control combinations were made between C/C and c/d components. The extent of pigment found in hair of grafts after three weeks growth in mouse testes was used as evidence of an interaction between populations. Normal and albino melanoblasts were found to be similar in viability, whereas melanoblasts of the genotype Wv/w C/C were largely excluded from hair follicles when placed in competition with w/w c/c melanoblasts. No difference in competitive advantage was observed between Sld/sl C/C and sl/sl c/c populations. These results confirm that the W and sl loci act at different sites. In addition they suggest that Wv/w melanoblasts are marginally viable cells that cannot compete with normal melanoblasts when the popuolations interact. The Wv/w melanoblast failure can also explain the spotting pattern and pigment dilution characteristic of dominant-spotting heterozygous mice.  相似文献   

4.
Melanoblasts, the precursors of the pigment-producing cells of the skin and hair, are derived from the neural crest and migrate to the skin around 12 days of gestation in the mouse. In adult mice almost all the melanoblasts are confined to the hair follicles except for the epidermal layers of nonhairy skin. The receptor tyrosine kinase, KIT, is necessary for the survival, proliferation, and migration of melanoblasts. We have utilised an organ culture for embryonic skin taken from Dct-lacZ transgenic mice. The early patterning of the follicles and developing skin layers is retained within the cultures and the lacZ reporter allows visualisation of the melanoblasts within their native tissue environment. Soon after initiation of hair follicle development, melanoblasts localise in the follicles. Inhibition of follicle formation demonstrates that this localisation is an active process; in the absence of follicles, the melanoblasts proliferate but remain associated with the basement membrane. Implantation of beads releasing MGF, the ligand of KIT, does not result in melanoblast migration towards the bead, rather their localisation to the follicles is accelerated. Addition of soluble MGF induces the same effect; KIT therefore promotes melanocyte movement and acts as a chemokinetic, or motogenic, receptor. The melanoblasts must be guided to their correct location by other chemotactic signals or move at random and locate by ceasing movement when the follicle is engaged.  相似文献   

5.
6.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and a melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with granulocyte-macrophage colony-stimulating factor (GMCSF) from 14 days (keratinocyte depletion). GMCSF stimulated the number of melanoblasts/melanocytes as well as the percentage of differentiated melanocytes in keratinocyte-depleted cultures. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and G(2)/M phases of the cell cycle were increased by the treatment with GMCSF. Moreover, anti-GMCSF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts/melanocytes as well as the differentiation of melanocytes. Enzyme-linked immunosorbent assay of culture media revealed that GMCSF was secreted from keratinocytes, but not from melanocytes. These results suggest that GMCSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanoblasts/melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

7.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were then further cultured with MDMD/MDMDF supplemented with steel factor (SLF) (keratinocyte depletion). SLF increased the number of melanoblasts and melanocytes as well as the proportion of differentiated melanocytes in the absence of keratinocytes. Flow cytometric analysis showed that melanoblasts and melanocytes in the S and G2/M phases of the cell cycle were increased by treatment with SLF. Moreover, an anti-SLF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes as well as the differentiation of melanocytes. These results suggest that SLF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

8.
Melanocytes characterized by the activities of tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha-melanocyte-stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte-macrophage colony-stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte-derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor-mediated signaling pathways.  相似文献   

9.
The replication fork helicase in eukaryotic cells is comprised of Cdc45, Mcm2-7, and GINS (CMG complex). In budding yeast, Sld3, Sld2, and Dpb11 are required for the initiation of DNA replication, but Sld3 and Dpb11 do not travel with the replication fork. Sld3 and Cdc45 bind to early replication origins during the G(1) phase of the cell cycle, whereas Sld2, GINS, polymerase ε, and Dpb11 form a transient preloading complex that associates with origins during S phase. We show here that Sld3 binds tightly to origin single-stranded DNA (ssDNA). CDK-phosphorylated Sld3 binds to origin ssDNA with similar high affinity. Origin ssDNA does not disrupt the interaction between Sld3 and Dpb11, and origin ssDNA does not disrupt the interaction between Sld3 and Cdc45. However, origin ssDNA substantially disrupts the interaction between Sld3 and Mcm2-7. GINS and Sld3 compete with one another for binding to Mcm2-7. However, in a mixture of Sld3, GINS, and Mcm2-7, origin ssDNA inhibits the interaction between Sld3 and Mcm2-7, whereas origin ssDNA promotes the association between GINS and Mcm2-7. We also show that origin single-stranded DNA promotes the formation of the CMG complex. We conclude that origin single-stranded DNA releases Sld3 from Mcm2-7, allowing GINS to bind Mcm2-7.  相似文献   

10.
Cells positive to the dopa reaction (melanocytes) as well as to the combined dopa-premelanin reaction (melanoblasts and melanocytes) in the epidermis of C57BL/10JHir-p/p (pink-eyed dilution) mice were fewer and less reactive than in C57BL/10JHir (black, P/P) mice, suggesting that the proliferation and differentiation of p/p melanocytes are inhibited. To confirm the inhibitory effects of p gene on the proliferation and differentiation of epidermal melanocytes, we cultured epidermal cell suspensions of neonatal skins from P/P and p/p in a serum-free medium. The proliferation and differentiation of p/p melanoblasts/melanocytes in primary culture were greatly inhibited as compared to P/P melanoblasts/melanocytes. The morphology of p/p melanoblasts/melanocytes cultured in melanocyte growth medium, though non-pigmented, was similar to P/P melanocytes; namely, dendritic, polygonal, or epithelioid. About 8% of p/p cells cultured in melanocyte growth medium were positive to the dopa reaction, and about 25% were reactive to the combined dopa-premelanin reaction. Eumelanin content in p/p was extremely reduced compared to P/P. The immunocytochemical staining of p/p melanoblasts/melanocytes revealed that they are negative to tyrosinase, but reactive to tyrosinase-related protein (TRP)-1, TRP-2, and c-kit. However, the reactivities in p/p were lower than in P/P. Although the differentiation of p/p melanoblasts was not induced by endothelin (ET)-1, ET-2, and ET-3, the proliferation of p/p melanoblasts was stimulated by them. These results suggest for the first time that p gene exerts its influence on the proliferative activities of mouse epidermal melanoblasts by affecting the regulatory mechanisms dependent on the function of ETs.  相似文献   

11.
The tyrosinase family of genes in vertebrates consists of three related members encoding melanogenic enzymes, tyrosinase (Tyr), tyrosinase-related protein-1 (TRP-1, Tyrp1) and tyrosinase-related protein-2 (Dct, TRP-2, Tyrp2). These proteins catalyze melanin production in pigment cells and play important roles in determining vertebrate coloration. This is the first report examining melanogenic gene expression in pigment cells during embryonic development of amphibians. Xenopus provides a useful experimental system for analyzing molecular mechanisms of pigment cells. However, in this animal little information is available not only about the developmental expression but also about the isolation of pigmentation genes. In this study, we isolated homologues of Tyr, Tyrp1 and Dct in Xenopus laevis (XlTyr, XlTyrp1, and XlDct). We studied their expression during development using in situ hybridization and found that all of them are expressed in neural crest-derived melanophores, most of which migrate through the medial pathway, and in the developing diencephalon-derived retinal pigment epithelium (RPE). Further, XlDct was expressed earlier than XlTyr and XlTyrp1, which suggests that XlDct is the most suitable marker gene for melanin-producing cells among them. XlDct expression was detected in migratory melanoblasts and in the unpigmented RPE. In addition, the expression of XlDct was detected in the pineal organ. The sum of these studies suggests that expression of the tyrosinase family of genes is conserved in pigment cells of amphibians and that using XlDct as a marker gene for pigment cells will allow further study of the developmental mechanisms of pigment cell differentiation using Xenopus.  相似文献   

12.
We have performed a detailed analysis of the recognition of melanoma Ags by the tumor-infiltrating lymphocytes (TIL) 1790, isolated from a patient who experienced a dramatic tumor regression following immunization with peptides from the gp100, MART-1, and tyrosinase Ags. This TIL was found to recognize HLA-A2-restricted CTL epitopes in tyrosinase-related protein (TRP)-2 (clone MR7) and NY-ESO-1 (clone M8). These epitopes were the same as the previously identified nonapeptide TRP-2: 180-188, and the overlapping NY-ESO-1 peptides, obtained by using lymphocytes from in vitro stimulation. We also cloned a previously unknown TRP-2 mRNA isoform (TRP-2-6b) that contained two novel exons alternatively spliced from the sixth intron between exons 6 and 7 of TRP-2 mRNA. The isoform encoded an HLA-A2-restricted antigenic epitope recognized by TIL clone MB4. An immunologic analysis of the patient's PBMC obtained before treatment showed the presence of high reactivity against NY-ESO-1 and both TRP-2 Ags, but not the Ags used for immunization. Because immune response against these Ags was less pronounced, it is possible that NY-ESO-1, TRP-2, and TRP-2-6b may be of importance in the generation of CTL-mediated tumor destruction and may have played a role in the dramatic tumor regression seen in this patient.  相似文献   

13.
Infertility due to growth arrest of ovarian follicles in Sl/Slt mice   总被引:4,自引:0,他引:4  
Sl, Sld, and Slt are mutant alleles at the steel locus. All Sl/Sld and most Sl/Slt female mice are infertile, but the cause of the infertility is different. Germ cells are absent in Sl/Sld ovaries but present in Sl/Slt ovaries. The infertility of Sl/Slt female mice was attributed to the growth arrest of ovarian follicles, and the mechanism was analyzed by producing aggregation chimeras between Sl/Slt and +/+ embryos. Sl/Slt oocytes were ovulated and fertilized in Sl/Slt----+/+ chimeras. We investigated the origin of granulosa cells in the growing follicles and that of granulosa-derived luteal cells in the chimeras by using the electrophoretic pattern of phosphoglycerate kinase-1 and the histochemical activity of beta-glucuronidase as markers. Granulosa cells of Sl/Slt genotype developed and constituted pregnant corpora lutea in Sl/Slt----+/+ chimeras. Therefore, the growth arrest of Sl/Slt ovarian follicles may not be due to an intrinsic defect in granulosa cells but may instead be due to an intrinsic defect in ovarian stromal cells. This suggests that normal stromal cells are essential for the development of ovarian follicles.  相似文献   

14.
The ability of murine Steel factor to promote the in vitro production of granulocyte-macrophage progenitor cells (CFU-GM) was examined in short-term liquid cultures. Bone marrow from C57BL/6J or Sl/Sld mice was placed in culture for seven days with either Steel factor alone or in the presence of IL-3. CFU-GM responsive to GM-CSF, IL-3, and CSF-1 were measured in the input population and again after 3 or 7 days in culture. Steel factor alone increased the number of all CFU-GM types as early as 3 days after culture initiation, with further increases at day 7. This effect was potentiated by the addition of IL-3. Production of CFU-GM by C57BL/6J or Sl/Sld marrow was comparable except for enhanced production of CSF-1 responsive progenitors by Sl/Sld marrow. A recombinant Sld protein was also shown to be equivalent to the wild-type protein in its capacity to promote CFU-GM production from normal bone marrow.  相似文献   

15.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with hepatocyte growth factor (HGF) from 14 days (keratinocyte depletion). The HGF increased the number of melanoblasts and melanocytes, but not the percentage of differentiated melanocytes in the melanoblast-melanocyte population in the absence of keratinocytes. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and/or G2/M phases of the cell cycle were increased by the treatment with HGF. Moreover, an anti-HGF antibody supplemented to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes, but not the differentiation of melanocytes. These results suggest that HGF is a keratinocyte-derived factor involved in regulating the proliferation of epidermal melanoblasts and melanocytes from newborn mice in cooperation with cAMP elevators and/or bFGF.  相似文献   

16.
Tyrosinase related protein (TRP)-1 and -2 regulate the main steps in melanin synthesis and are immune targets in skin cancer or autoimmune pigmentary disorders. We found that ionophore monensin (Mon) and the quaternary amine chloroquine (CQ) discriminate between the traffic routes of TRP-2 and TRP-1. TRP-2 N-glycan processing is interrupted by Mon between ER and trans-Golgi, whereas this process continues for TRP-1. Mature TRP-2 is diverted by CQ treatment to a degradation pathway which depends on functional vacuolar ATPases. Conversely, the subcellular distribution and stability of TRP-1 were not affected by CQ. We propose that TRP-2 is sorted and trafficked in the early secretory pathway with a cargo which does not include TRP-1; post Golgi, TRP-2 intersects the endocytic pathway following a route via early endosomes, possibly by rapid recycling from the plasma membrane. These data show that highly structural homologous glycoproteins use distinct trafficking pathways in the same cell.  相似文献   

17.
The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.  相似文献   

18.
Sld2 is essential for the initiation of DNA replication, but the mechanism underlying its role in replication is not fully understood. The S-phase cyclin dependent kinase (S-CDK) triggers the association of Sld2 with Dpb11, and a phosphomimetic mutation of Sld2, Sld2T84D, functionally mimics the S-CDK phosphorylated state of Sld2. We report that Sld2T84D binds directly to the single-stranded (ss) DNA of two different origins of replication, and S-CDK phosphorylation of Sld2 stimulates the binding of Sld2 to origin ssDNA. Sld2T84D binds to a thymine-rich ssDNA region of the origin ARS1, and substitution of ARS1 thymines with adenines completely disrupts binding of Sld2T84D. Sld2T84D enhances the ability of origin ssDNA to pulldown Dpb11, and Sld2 binding to origin ssDNA may be important to allow Sld2 and Dpb11 to associate with origin DNA. We also report that Sld2T84D anneals ssDNA of an origin sequence. Dpb11 anneals ssDNA to low levels, and the addition of Sld2T84D with Dpb11 results in higher annealing activity than that of either protein alone. Sld2-stimulated annealing may be important for maintaining genome stability during the initiation of DNA replication.  相似文献   

19.
20.
The Cdc45-Mcm2-7-GINS (CMG) complex is the replication fork helicase in eukaryotes. Synthetic lethal with Dpb11-1 (Sld2) is required for the initiation of DNA replication, and the S phase cyclin-dependent kinase (S-CDK) phosphorylates Sld2 in vivo. We purified components of the replication initiation machinery and studied their interactions in vitro. We found that unphosphorylated or CDK-phosphorylated Sld2 binds to the mini chromosome maintenance (Mcm)2-7 complex with similar efficiency. Sld2 interaction with Mcm2-7 blocks the interaction between GINS and Mcm2-7. The interaction between CDK-phosphorylated Sld2 and Mcm2-7 is substantially inhibited by origin single-stranded DNA (ssDNA). Furthermore, origin ssDNA allows GINS to bind to Mcm2-7 in the presence of CDK-phosphorylated Sld2. However, unphosphorylated Sld2 blocks the interaction between GINS and Mcm2-7 even in the presence of origin ssDNA. We identified a mutant of Sld2 that does not bind to DNA. When this mutant is expressed in yeast cells, cell growth is severely inhibited with very slow progression into S phase. We propose a model wherein Sld2 blocks the interaction between GINS and Mcm2-7 in vivo. Once origin ssDNA is extruded from the Mcm2-7 ring and CDK phosphorylates Sld2, the origin ssDNA binds to CDK-phosphorylated Sld2. This event may allow the interaction between GINS and Mcm2-7 in vivo. Thus, CDK phosphorylation of Sld2 may be important to release Sld2 from Mcm2-7, thereby allowing GINS to bind Mcm2-7. Furthermore, origin ssDNA may stimulate the formation of the CMG complex by alleviating inhibitory interactions between Sld2 with Mcm2-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号