首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antisense oligodeoxynucleotides targeted to Ha-ras mRNA have been designed to discriminate between the codon 12-mutated oncogene and the normal proto-oncogene. An in vitro assay using two different sources of RNase H (rabbit reticulocyte lysates and nuclear extract from HeLa cells) was used to characterize oligonucleotide binding to normal and mutated Ha-ras mRNA. Short oligonucleotides (12- or 13mers) centered on the mutation had a very high discriminatory efficiency. Longer oligonucleotides (16mers) did not discriminate efficiently between the mutated and the normal mRNA. We have tested the efficacy of dodecanucleotides to induce RNase H cleavage of the full-length mRNA, moving the target sequence from the loop to the stem region which is formed in the vicinity of mutated codon 12. The most selective oligonucleotides were centered on the mutation which is located near the junction between the loop and stem regions even though they were less efficient at inducing RNase H cleavage than those targeted to the loop region. The 12mer antisense oligonucleotide with the highest discriminatory power was selected for cell culture studies. This oligonucleotide inhibited the proliferation of a human cell line which had been transformed with the mutated Ha-ras gene (HBL100ras1) but had no effect on the parental cell line which was transfected with the vector DNA (HBL 100neo) and expressed only the normal Ha-ras gene. Growth inhibition of HBL100ras1 cells was associated with specific ablation of targeted Ha-ras mRNA as shown by RT-PCR. These results show that 'in vitro' evaluation using an RNase H assay allowed us to select an antisense oligonucleotide which elicited a selectivity towards point-mutated Ha-ras mRNA when added at 10 microM concentration to the culture medium of cells expressing wild type and mutated Ha-ras mRNA.  相似文献   

2.
Dodecadeoxyribonucleotides derivatized with 1,10-phenanthroline or psoralen were targeted to the point mutation (G<-->U) in codon 12 of the Ha-ras mRNA. DNA and RNA fragments, 27 nucleotides in length, and containing the complementary sequence of the 12mers, were used to compare the reactivity of the activatable dodecamers (cleavage of the target by the phenanthroline-12mer conjugates; photo-induced cross-linking of psoralen-12mer conjugates to the target). The reactivity of the RNA with the dodecamers was weaker than that of the DNA target. With psoralen-substituted oligonucleotides, it was possible to obtain complete discrimination between the mutated target (which contained a psoralen-reactive T(U) in the 12th codon) and the normal target (which contained G at the same position). When longer Ha-ras RNA fragments were used as targets (120 and 820 nucleotides), very little reactivity was observed. Part of the reactivity could be recovered by using 'helper' oligonucleotides that hybridized to adjacent sites on the substrate. A 'helper' chain length greater than 13 was required to improve the reactivity of dodecamers. However, the dodecanucleotides induced RNase H cleavage of the target RNA in the absence of 'helper' oligonucleotide. Therefore, in the absence of the RNase H enzyme, long oligonucleotides are needed to compete with the secondary structures of the mRNA. In contrast, formation of a ternary complex oligonucleotide-mRNA-RNase H led to RNAT cleavage with shorter oligonucleotides.  相似文献   

3.
G J Veal  S Agrawal    R A Byrn 《Nucleic acids research》1998,26(24):5670-5675
We have used a ribonuclease protection assay to investigate RNase H cleavage of HIV-1 mRNA mediated by phosphorothioate antisense oligonucleotides complementary to the gag region of the HIV-1 genome in vitro. Cell lysate experiments in H9 and U937 cells chronically infected with HIV-1 IIIB showed RNase H cleavage of unspliced gag message but no cleavage of spliced message which did not contain the target gag region. RNase H cleavage products were detected at oligonucleotide concentrations as low as 0.01 microM and the RNase H activity was seen to be concentration dependent. Similar experiments with 1-, 3- and 5-mismatch oligonucleotides demonstrated sequence specificity at low concentrations, with cleavage of gag mRNA correlating with the predicted activities of the parent and mismatch oligonucleotides based on their hybridization melting temperatures. Experiments in living cells suggested that RNase H-specific antisense activity was largely determined by the amount of oligonucleotide taken up by the different cell lines studied. RNase H cleavage products were detected in antisense oligonucleotide treated MT-4 cells acutely infected with HIV-1 IIIB, but not in infected H9 cells treated with oligonucleotide under the same conditions. The data presented demonstrate potent and specific RNase H cleavage of HIV-1 mRNA mediated by an antisense oligonucleotide targeted to HIV-1 gag mRNA, and are in agreement with previous reports that the major obstacle to demonstrating antisense activity in living cells remains the lack of penetration of these agents into the desired cellular compartment.  相似文献   

4.
5.
Triple helix formation usually requires an oligopyrimidine*oligopurine sequence in the target DNA. A triple helix is destabilized when the oligopyrimidine*oligopurine target contains one (or two) purine*pyrimidine base pair inversion(s). Such an imperfect target sequence can be recognized by a third strand oligonucleotide containing an internally incorporated acridine intercalator facing the inverted purine*pyrimidine base pair(s). The loss of triplex stability due to the mismatch is partially overcome. The stability of triplexes formed at perfect and imperfect target sequences was investigated by UV thermal denaturation experiments. The stabilization provided by an internally incorporated acridine third strand oligonucleotide depends on the sequences flanking the inverted base pair. For triplexes containing a single mismatch the highest stabilization is observed for an acridine or a propanediol tethered to an acridine on its 3'-side facing an inverted A*T base pair and for a cytosine with an acridine incorporated to its 3'-side or a guanine with an acridine at its 5'-side facing an inverted G*C base pair. Fluorescence studies provided evidence that the acridine was intercalated into the triplex. The target sequences containing a double base pair inversion which form very unstable triplexes can still be recognized by oligonucleotides provided they contain an appropriately incorporated acridine facing the double mismatch sites. Selectivity for an A*T base pair inversion was observed with an oligonucleotide containing an acridine incorporated at the mismatched site when this site is flanked by two T*A*T base triplets. These results show that the range of DNA base sequences available for triplex formation can be extended by using oligonucleotide intercalator conjugates.  相似文献   

6.
Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage.  相似文献   

7.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

8.
9.
We have used derivatized antisense oligodeoxynucleotides both in vitro and in vivo specifically to inhibit translation of the activated human oncogene Ha-ras. The oligonucleotides (5'-CCACACCGA-3') were targeted to a region of Ha-ras mRNA including the point mutation G----T at the 12th codon which leads to a Gly----Val substitution in the ras p21 protein. They were linked to an intercalating agent and/or to a hydrophobic tail, both to increase their affinity for their mRNA target and to enhance their uptake by tumor cells. A cell-free translation system was used to demonstrate an RNase H-dependent specific inhibition of activated ras protein synthesis. 50% inhibition was observed at a concentration of 0.5 microM of the most efficient oligonucleotide (5'-substitution with an acridine derivative and 3'-substitution by a dodecanol chain). This inhibitory effect stems from a point mutation-sensitive cleavage of the mRNA and it mirrors the growth inhibition obtained with T24 bladder carcinoma cells, which carry activated Ha-ras. The proliferation of HBL100 cells (non tumorigenic human mammary cell line) which carry two copies of normal Ha-ras was unaffected. This study shows that it is possible to design antisense agents that will inactivate the mutated oncogene but not the protooncogene which is generally essential to cell survival.  相似文献   

10.
Most antisense oligonucleotide experiments are performed with molecules containing RNase H-competent backbones. However, RNase H may cleave nontargeted mRNAs bound to only partially complementary oligonucleotides. Decreasing such "irrelevant cleavage" would be of critical importance to the ability of the antisense biotechnology to provide accurate assessment of gene function. RNase P is a ubiquitous endogenous cellular ribozyme whose function is to cleave the 5' terminus of precursor tRNAs to generate the mature tRNA. To recruit RNase P, complementary oligonucleotides called external guide sequences (EGS), which mimic structural features of precursor tRNA, were incorporated into an antisense 2'-O-methyl oligoribonucleotide targeted to the 3' region of the PKC-alpha mRNA. In T24 human bladder carcinoma cells, these EGSs, but not control sequences, were highly effective in downregulating PKC-alpha protein and mRNA expression. Furthermore, the downregulation is dependent on the presence of, and base sequence in, the T-loop. Similar observations were made with an EGS targeted to the bcl-xL mRNA.  相似文献   

11.
12.
Oligonucleotide (2-aminoethyl)phosphonates in which the backbone consisted of isomerically pure, alternating (2-aminoethyl)-phosphonate and phosphodiester linkages have been prepared and characterized. One of these single isomer oligonucleotides (Rp) formed a more stable duplex with DNA or RNA than its corresponding natural counterpart. Hybrid stability was more pH-dependent, but less salt-dependent than a natural duplex. The specificity of hybridization was examined by hybridization of an oligonucleotide containing one (2-aminoethyl)phosphonate to oligonucleotides possessing mismatches in the region opposite to the aminoethyl group. In contrast to oligonucleotides containing (aminomethyl)-phosphonate linkages, oligonucleotide (2-aminoethyl)phosphonates were completely stable to hydrolysis in aqueous solution. These oligonucleotides were resistant to nuclease activity but did not induce RNase H mediated cleavage of a complementary RNA strand. Incubation in a serum-containing medium resulted in minimal degradation over 24 hours. Studies of cell uptake by flow cytometry and confocal microscopy demonstrated temperature dependent uptake and intracellular localization. (2-Aminoethyl)phosphonates represent a novel approach to the introduction of positive charges into the backbone of oligonucleotides.  相似文献   

13.
Abstract

We have designed a new type of antisense oligonucleotide, containing two hairpin loop structures with RNA/DNA base pairs (sense (RNA) and antisense (DNA)) in the double helical stem (nicked and circular dumbbell DNA/RNA chimeric oligonucleotides). The reaction of the nicked and circular dumbbell DNA/RNA chimeric oligonucleotides with RNase H gave the corresponding anti-DNA together with the sense RNA cleavage products. These oligonucleotides were more resistant to exonuclease attack. We also describe the anti-Fluv activities of nicked and circular dumbbell DNMA chimeric oligonucleotides.  相似文献   

14.
Oligonucleotide-directed mutagenesis is a widely used method for studying enzymes and improving their properties. The number of mutants that can be obtained with this method is limited by the number of synthetic 25-30mer oligonucleotides containing the mutation mismatch, becoming impracticably large with increasing size of a mutant library. To make this approach more practical, shorter mismatching oligonucleotides (7-12mer) might be employed. However, the introduction of these oligonucleotides in dsDNA poses the problem of sealing a DNA nick containing 5'-terminal base pair mismatches. In the present work we studied the ability of T4 DNA ligase to catalyze this reaction. It was found that T4 DNA ligase effectively joins short oligonucleotides, yielding dsDNA containing up to five adjacent mismatches. The end-joining rate of mismatching oligonucleotides is limited by the formation of the phosphodiester bond, decreasing with an increase in the number of mismatching base pairs at the 5'-end of the oligonucleotide substrate. However, in the case of a 3 bp mismatch, the rate is higher than that obtained with a 2 bp mismatch. Increasing the matching length with the number of mismatching base pairs fixed, or moving the mismatching motif downstream with respect to the joining site increases the rate of ligation. The ligation rate increases with the molar ratio [oligonucleotide:dsDNA]; however, at high excess of the oligonucleotide, inhibition of joining was observed. In conclusion, 9mer oligonucleotides containing a 3 bp mismatch are found optimal substrates to introduce mutations in dsDNA, opening perspectives for the application of T4 DNA ligase in mutagenesis protocols.  相似文献   

15.
RNase P from E. coli will cleave a RNA at a site designated in a complex with an external guide sequence (EGS). The location of the site is determined by the Watson-Crick complementary sequence that can be formed between the RNA and the EGS. Morpholino oligonucleotides (PMOs) that have the same base sequences as any particular EGS will not direct cleavage by RNase P of the target RNA at the expected site in three mRNAs. Instead, cleavage occurs at a secondary site that does not correspond exactly to the expected Watson-Crick sequence in the PMO. This cleavage in the mRNA for a drug resistance gene, CAT mRNA, is at least second order in the concentration of the PMOs, but the mechanism is not understood yet and might be more complicated than a simple second-order reaction. EGSs and PMOs inhibit the reactions of each other effectively in a competitive fashion. A basic peptide attached to the PMO (PPMO) is more effective because of its binding properties to the mRNA as a substrate. However, a PMO is just as efficient as a PPMO on a mRNA that is mutated so that the canonical W-C site has been altered. The altered mRNA is not recognizable by effective extensive W-C pairing to an EGS or PMO. The complex of a PMO on a mutated mRNA as a substrate shows that the dimensions of the modified oligonucleotide cannot be the same as a naked piece of single-stranded RNA.  相似文献   

16.
Important chemical and biochemical properties of boranophosphate DNA and RNA oligonucleotides are reviewed. Stereoregular boranophosphate oligomers can be synthesized enzymatically and form stable duplexes with DNA. Fully boronated, non-stereoregular oligothymidylates, synthesized chemically, form hybrids with poly(A) that have lower melting points than oligothymidylate:poly(A), yet they nevertheless can support the RNase H mediated cleavage of RNA.  相似文献   

17.
18.
Abstract

Important chemical and biochemical properties of boranophosphate DNA and RNA oligonucleotides are reviewed. Stereoregular boranophosphate oligomers can be synthesized enzymatically and form stable duplexes with DNA. Fully boronated, non-stereoregular oligothymidylates, synthesized chemically, form hybrids with poly(A) that have lower melting points than oligothymidylate:poly(A), yet they nevertheless can support the RNase H mediated cleavage of RNA.  相似文献   

19.
Phosphorothioate deoxyribonucleotides (PS-DNA) are among the most widely used antisense inhibitors. PS-DNA exhibits desirable properties such as enhanced nuclease resistance, improved bioavailability, and the ability to induce RNase H mediated degradation of target RNA. Unfortunately, PS-DNA possesses a relatively low binding affinity for target RNA that impacts on its potency in antisense applications. We recently showed that phosphodiester-linked oligonucleotides comprised of 2'-deoxy-2'-fluoro-D-arabinonucleic acid (FANA) exhibit both high binding affinity for target RNA and the ability to elicit RNase H degradation of target RNA [Damha et al. (1998) J. Am. Chem. Soc. 120, 12976]. In the present study, we evaluated the antisense activity of phosphorothioate-linked FANA oligonucleotides (PS-FANA). Oligonucleotides comprised entirely of PS-FANA were somewhat less efficient in directing RNase H cleavage of target RNA as compared to their phosphorothioate-linked DNA counterparts, and showed only weak antisense inhibition of cellular target expression. However, mixed-backbone oligomers comprised of PS-FANA flanking a central core of PS-DNA were found to possess potent antisense activity, inhibiting specific cellular gene expression with EC(50) values of less than 5 nM. This inhibition was a true antisense effect, as indicated by the dose-dependent decrease in both target protein and target mRNA. Furthermore, the appearance of mRNA fragments was consistent with RNase H mediated cleavage of the mRNA target. We also compared a series of PS-[FANA-DNA-FANA] mixed-backbone oligomers of varying PS-DNA core sizes with the corresponding 2'-O-methyl oligonucleotide chimeras, i.e., PS-[2'meRNA-DNA-2'meRNA]. Both types of oligomers showed very similar binding affinities toward target RNA. However, the antisense potency of the 2'-O-methyl chimeric compounds was dramatically attenuated with decreasing DNA core size, whereas that of the 2'-fluoroarabino compounds was essentially unaffected. Indeed, a PS-FANA oligomer containing a single deoxyribonucleotide residue core retained significant antisense activity. These findings correlated exactly with the ability of the various chimeric antisense molecules to elicit RNase H degradation of the target RNA in vitro, and suggest that this mode of inhibition is likely the most important determinant for potent antisense activity.  相似文献   

20.
We have characterized cloned His-tag human RNase H1. The activity of the enzyme exhibited a bell-shaped response to divalent cations and pH. The optimum conditions for catalysis consisted of 1 mM Mg(2+) and pH 7-8. In the presence of Mg(2+), Mn(2+) was inhibitory. Human RNase H1 shares many enzymatic properties with Escherichia coli RNase H1. The human enzyme cleaves RNA in a DNA-RNA duplex resulting in products with 5'-phosphate and 3'-hydroxy termini, can cleave overhanging single strand RNA adjacent to a DNA-RNA duplex, and is unable to cleave substrates in which either the RNA or DNA strand has 2' modifications at the cleavage site. Human RNase H1 binds selectively to "A-form"-type duplexes with approximately 10-20-fold greater affinity than that observed for E. coli RNase H1. The human enzyme displays a greater initial rate of cleavage of a heteroduplex-containing RNA-phosphorothioate DNA than an RNA-DNA duplex. Unlike the E. coli enzyme, human RNase H1 displays a strong positional preference for cleavage, i.e. it cleaves between 8 and 12 nucleotides from the 5'-RNA-3'-DNA terminus of the duplex. Within the preferred cleavage site, the enzyme displays modest sequence preference with GU being a preferred dinucleotide. The enzyme is inhibited by single-strand phosphorothioate oligonucleotides and displays no evidence of processivity. The minimum RNA-DNA duplex length that supports cleavage is 6 base pairs, and the minimum RNA-DNA "gap size" that supports cleavage is 5 base pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号