共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel modification methods for lipase biocatalysts effective in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids (PUFAs) were described. Based on conventional immobilization in single aqueous medium, immobilization of lipase in two phase medium composed of buffer and octane was employed. Furthermore, immobilization (in single aqueous or in two phase medium) coupled to fish oil treatment was integrated. Among these, lipase immobilized in two phase medium coupled to fish oil treatment (IMLAOF) had advantages over other modified lipases in initial reaction rate and hydrolysis degree. The hydrolysis degree increased from 12% with the free lipase to 40% with IMLAOF. Strong polar and hydrophobic solvents had negative impact on immobilization-fish oil treatment lipases, while low polar solvents were helpful to maintain the modification effect of immobilization-fish oil treatment. After five cycles of usage, the immobilization-fish oil treatment lipases still maintained more than 80% of relative hydrolysis degree. 相似文献
2.
Lipase catalyzed production of monoacylglycerols by the esterification of fish oil fatty acids with glycerol 总被引:1,自引:0,他引:1
Hee-Guk Byun Tae-Kil Eom Won-Kyo Jung Se-Kwon Kim 《Biotechnology and Bioprocess Engineering》2007,12(5):491-496
In this study, we attempted the efficient production of monoacylglycerols (MAG) via the lipase-catalyzed esterification of
glycerol with fatty acids obtained from sardine oil. The reaction factors that influenced MAG synthesis were the glycerol
to fatty acid mole ratio, amount of enzyme, organic solvent, temperature, and the type of lipase used. Porcine pancreas lipase
was selected to catalyze this reaction. The optimum conditions we determined for MAG synthesis were a glycerol to fatty acid
mole ratio of 1∶6, 100 mg/mL of lipase, and 30°C in dioxane. Under these conditions, the MAG content was 68% (w/w) after 72
h of reaction. The MAGs synthesized via the lipase-catalyzed esterification of glycerol with fatty acids included monomyristin,
monopamiltin, and monoolein, as identified by GCMS. 相似文献
3.
There is accumulating evidence of reductions in red blood cell membrane essential fatty acids in patients with schizophrenia. The mechanisms that may underlie these reductions have yet to be determined. It is possible that the observed membrane fatty acid deficits are associated with the development of schizophrenia. Alternatively, the membrane fatty acid deficits may be due to environmental factors, such as smoking and variations in diet, which may not be associated specifically with the pathophysiology of schizophrenia. Patients with schizophrenia smoke cigarettes at very high rates. Cigarette smoke contains many pro-oxidants that contribute directly to oxidative stress. Polyunsaturated fatty acids (PUFAs) are very susceptible to oxidative effects of free radicals. Thus, smoke-induced oxidative stress could plausibly account for reductions in membrane fatty acid in schizophrenia. Recent studies provide conflicting evidence for smoking effects on membrane fatty acid deficits. Likewise, the effects of diet on membrane PUFAs in schizophrenia are not entirely clear. Essential PUFAs need to be consumed in diet. Thus, differences in membrane PUFAs observed between patients and control subjects may be due to dietary variation. Few studies that have examined dietary effects differ in their interpretation of the effects of diet on membrane PUFAs. Thus, the jury is still out whether smoking or dietary effects are the primary causes of membrane PUFA deficits in patients with schizophrenia. Future studies will need to systematically examine the potential effects of smoking and diet, as well as other environmental factors such exercise, to definitively establish whether or not PUFA abnormalities are inherent to schizophrenia. 相似文献
4.
HCV infection can lead to chronic infectious hepatitis disease with serious sequelae. Interferon-alpha, or its PEGylated form, plus ribavirin is the only treatment option to combat HCV. Alternative and more effective therapy is needed due to the severe side effects and unsatisfactory curing rate of the current therapy. In this study, we found that several polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) are able to exert anti-HCV activities using an HCV subgenomic RNA replicon system. The EC(50) (50% effective concentration to inhibit HCV replication) of AA was 4microM that falls in the range of physiologically relevant concentration. At 100microM, alpha-linolenic acid, gamma-linolenic, and linoleic acid only reduced HCV RNA levels slightly and saturated fatty acids including oleic acid, myristic acid, palmitic acid, and steric acid had no inhibitory activities toward HCV replication. When AA was combined with IFN-alpha, strong synergistic anti-HCV effect was observed as revealed by an isobologram analysis. It will be important to determine whether PUFAs can provide synergistic antiviral effects when given as food supplements during IFN-based anti-HCV therapy. Further elucidation of the exact anti-HCV mechanism caused by AA, DHA, and EPA may lead to the development of agents with potent activity against HCV or related viruses. 相似文献
5.
Dietary alterations were used to demonstrate selective handling of fatty acids during their redistributionin vivo. Differences in the mol Per cent of individual acyl chains in the non-esterified fatty acid, acyl-coenzyme A and PhosPholiPid
fractions reflected a result of relative Precursor abundance combined with enzymic selectivities. Selective distributions
were observed in the utilization of individual acyl chains between 16:0 and 18:0, 18:1 and 18:2, and among 20:3, 20:4 and
20:5, 22:6 by ligase(s), hydrolase(s) and acyl-transferases.
The variations in the mol Per cent of linoleate Present in the acyl-coenzyme A fraction of liver relative to that in the non-esterified
fatty acids suggested anin vivo regulation of the level of linoleoyl-coenzyme A that influenced the synthesis of both arachidonoyl-coenzyme A and lipids.
The greater abundance of eicosaPentaenoic acid in the free fatty acid fraction relative to that in the acyl-coenzyme A fraction
may increase the ability of dietary 20: 5n-3 to be an effective inhibitor of the synthesis of Prostaglandins derived from
20:4n-6. 相似文献
6.
7.
Rezanka T 《Phytochemistry》2002,60(6):639-646
The determination of chemical structures of five novel compounds, i.e. one multibranched polyunsaturated fatty acid ((2E,4E,7S,8E,10E,12E,14S)-7,9,13,17-tetramethyl-7,14-dihydroxy-2,4,8,10,12,16-octadecahexaenoic acid) and its four glycosides from seven different myxomycetes is described. The absolute configuration of both hydroxyl groups was determined. The glycosides containing glucose, mannose and rhamnose. These compounds were identified by means of 1H and 13C NMR, MS, UV and IR spectra. Three of them were identified in Arcyria cinerea (Bull.) Pers., two in A. denudata (L.) Wetts., and A. nutans (Bull.) Grev., Fuligo septica (L.) Wigg., Lycogala epidendrum (L.) Fries, Physarum polycephalum Schwein., and Trichia varia Pers. contained one of the identified glycosides each. 相似文献
8.
Jagan M. Billakanti Owen J. Catchpole Tina A. Fenton Kevin A. Mitchell Andrew D. MacKenzie 《Process Biochemistry》2013,48(12):1999-2008
A novel method for the efficient extraction of fucoxanthin and lipids containing polyunsaturated fatty acids (PUFAs) from the brown seaweed Undaria pinnatifida was developed and demonstrated at a laboratory scale. U. pinnatifida, also known as Wakame, contains a number of biologically active lipophilic compounds, particularly fucoxanthin, which has anti-oxidant, anti-cancer, anti-obesity and anti-inflammatory properties. The yield of fucoxanthin and lipids containing PUFAs was determined by extraction from wet and freeze-dried seaweed using dimethyl ether (DME) and ethanol and from enzyme-pretreated seaweed using the same solvents. The highest yields of fucoxanthin (94%) and lipids (94%) rich in PUFAs were obtained from fresh (wet) U. pinnatifida by enzyme pre-processing, followed by extraction using DME with ethanol as a co-solvent. In comparison, ethanol extraction resulted in lower extraction yields for both fucoxanthin (86%) and lipids (73%) under the conditions described. Enzyme pre-processing using alginate lyase resulted in the hydrolysis of cell wall polysaccharides, resulting in high extraction yields. The hydrolysis time, pH and temperature were found to be the most important parameters for the enzyme pre-processing step and for minimizing fucoxanthin losses due to oxidative degradation. The removal of water-soluble compounds (polysaccharides) following the enzyme pre-treatment prior to DME extractions doubled the throughput and maximized the yield. The residual biomass was colorless or a pale-brown color after the DME extraction, which indicated the highly effective extraction of fucoxanthin. The PUFA content and fucoxanthin levels were not affected by the enzyme or extraction using the described enzyme-assisted DME + ethanol co-solvent process. 相似文献
9.
Iwasaki M Taylor GW Moynihan P Yoshihara A Muramatsu K Watanabe R Miyazaki H 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(2):107-112
The longitudinal relationship between dietary n-6 to n-3 PUFAs ratio and periodontal disease in 235 Japanese subjects for whom data were available for the years 2003-2006 was investigated. PUFAs intake was assessed at baseline with a brief-type self-administered diet history questionnaire. Full-mouth periodontal status, measured as the clinical attachment level (CAL), was recorded at baseline and once a year for 3 years. The number of teeth with a change in the loss of CAL ≥3 mm at any site over a year was calculated as ‘periodontal disease events’. Poisson regression analysis was conducted, with dietary n-6 to n-3 PUFAs ratio as the main predictor, to estimate its influence on periodontal disease events.A high dietary n-6 to n-3 PUFAs ratio was significantly associated with greater number of periodontal disease events. The findings suggest the dietary n-6 to n-3 PUFAs ratio is associated with periodontal disease among older Japanese. 相似文献
10.
甘蔗糖蜜发酵生产多不饱和脂肪酸的菌种筛选 总被引:4,自引:0,他引:4
利用苏丹黑B染色和测定多不饱和脂肪酸碘值的方法,从土壤中筛选出一株适合用甘蔗糖蜜为原料生产多不饱和脂肪酸的霉菌LB1。研究表明,该菌株培养的最适糖蜜浓度为10°BX,通过单因素实验和正交实验设计,确定了优化培养条件:最适温度28℃、摇床转速为160r/min、pH值为6.0和培养天数为5d。在优化条件下,菌株的油脂含量为其生物量的57.08%,其中油脂中多不饱和脂肪酸的组成及含量为:油酸15.42%,亚油酸14.38%、γ-亚麻酸23.55%、α-亚麻酸3.06%、花生四烯酸9.87%、廿碳五烯酸8.14%、廿二碳六烯酸6.07%等。多不饱和脂肪酸的含量占总脂肪酸的80.49%。对LB1菌株进行形态特征、生理特征分析及5.8S rDNA基因两侧的内转录间隙进行序列分析推测该菌株为反屈毛霉。 相似文献
11.
Docosahexaenoic acid (DHA) is an important polyunsatured fatty acid (PUFA) which can be purified from tuna fish oil fatty acids by selective enzymatic esterification. The present paper investigates the kinetic study for selective esterification of tuna fish oil fatty acids with butanol catalyzed by Rhizopus oryzae lipase (ROL) in biphasic solvent system. Under the most suitable reaction conditions, 76.2% esterification was achieved in 24 h. Different kinetic models for esterification given by Segel [1], Oliveira et al. [2], Gogoi et al. [3], and Kraai et al. [4] were tested for fitting the esterification data and the model given by Oliveira et al. [2] was found to be most suitable. The model given by Prazeres et al. [5] for hydrolysis was also tested for esterification and the model with second order product inhibition was found to provide better match between the predicted and experimental values than that of model by Oliveira et al. [2]. The kinetic model was fitted using MATLAB® to determine the best kinetic parameters. The average value of kinetic constants using the model given by Prazeres et al. were estimated as Km = 23.6 μmoles FFA/ml, Ki1 = 4.6 × 10−5 μmoles FFA/mg enzyme h, Ki2 = 0.0062 μmoles FFA/mg enzyme h and K2 = 149.5 μmoles FFA/mg enzyme h. 相似文献
12.
The lipase-catalyzed acylglycerol synthesis with fatty acids of different chain length is studied. Measured ester mole fractions at equilibrium are compared with calculated mole fractions. For these calculations the computer program TREP (Two-phase Reaction Equilibrium Prediction) is used. This program is based on the UNIFAC group contribution method and is developed for nondilute two-phase reaction systems.With one set of equilibrium constants, namely 1.3, 0.8, and 0.6 for monoester, diester, and triester synthesis, respectively, the equilibrium position of the reaction between glycerol and all saturated fatty acids with a chain length from 6 to 18 and oleic acid (cis-9-octadecenoic acid) can be calculated. Deviations, expressed as the ratio between calculated and measured ester mole fractions, usually were between 0.7 and 1.2. In the presence of solvents, the deviations of the monoester mole fractions were higher and rose up to 3. Without addition of a solvent, the ester mole fractions at equilibrium are dependent on the fatty acid chain length. With the short-chain hexanoic acid, the monoester mole fraction is the highest ester mole fraction, while for the long-chain oleic acid, the diester mole fraction is the highest one. The ester mole fractions become independent on the chain length of the fatty acid with a solvent added in a sufficient high concentration. Both reactions, with saturated and unsaturated C(18) fatty acids, lead to the same equilibrium position. The program TREP is found to make good predictions of the equilibrium amounts of ester and fatty acid. However, systematic deviations arise between measured and calculated amounts of water and glycerol in the organic phase. The calculated water and glycerol amounts are always lower than the measured ones. These deviations seem to be highest in nonpolar media and are probably due to deficiencies in the UNIFAC calculation method. Some preliminary experiments show the effect of the choice of solvent on the reaction rates. In polar solvents, the monoester production rate is enhances by a factor of 1.5 as compared to the reaction rate in a system without solvent. (c) 1993 John Wiley & Sons, Inc. 相似文献
13.
Mamalakis G Kiriakakis M Tsibinos G Kafatos A 《Prostaglandins, leukotrienes, and essential fatty acids》2004,70(6):495-501
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 150 elderly males from the island of Crete. The subjects were survivors of the Greek Seven Countries Study group. The mean age was 84 years. The number of subjects with complete data on all variables studied was 63. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the short form of the Geriatric Depression Scale (GDS-15). Depression correlated negatively with adipose tissue alpha-linolenic acid (C18:3n-3). Depressed subjects had significantly reduced (-10.5%) adipose tissue C18:3n-3 levels than non-depressed subjects. The observed negative relation between adipose tissue C18:3n-3 and depression, in the present study, appears to indicate increasing long-term dietary C18:3n-3 intakes with decreasing depression. This agrees with findings of other studies indicating an inverse relation between depression and consumption of fish and n-3 polyunsaturated fatty acids. This is the first literature report of a relation between adipose tissue C18:3n-3 and depression. Furthermore, this is the first report of a relation between adipose PUFA and depression in an elderly sample. Depression has been reported to be associated with elevated cytokines, such as, IL-1, IL-2, IL-6, INF-gamma and INF-alpha. Fish oil and omega-3 fatty acids, on the other hand, have been reported to inhibit cytokine production. The observed negative relation between adipose C18:3n-3 and depression, therefore, may stem from the inhibiting effect of C18:3n-3 or its long-chain metabolites on cytokine synthesis. 相似文献
14.
Martin Truksa Patricia Vrinten Xiao Qiu 《Molecular breeding : new strategies in plant improvement》2009,23(1):1-11
Very-long-chain polyunsaturated fatty acids (VLCPUFAs) have demonstrated health benefits. Currently, the main sources for
these fatty acids are oils from fish and microbes. However, shrinking fish populations and the high cost of microbial oil
extraction are making the economic sustainability of these sources questionable. Metabolic engineering of oilseed crops could
provide a novel and sustainable source of VLCPUFAs. Recently, genes encoding desaturases and elongases from microbes have
been identified and successfully expressed in oilseed plants. However, the levels of VLCPUFAs produced in transgenic plants
expressing these genes are still much lower than those found in native microbes. This review assesses the recent progress
and future perspectives in the metabolic engineering of PUFAs in plants. 相似文献
15.
Yao JK Sistilli CG van Kammen DP 《Prostaglandins, leukotrienes, and essential fatty acids》2003,69(6):429-436
Findings to date provide evidence that altered membrane structure and function are present in patients with either first-episode or chronic schizophrenia, suggesting defects in phospholipid metabolism and cell signaling in schizophrenia. The purpose of this investigation is to test whether decreased membrane polyunsaturated fatty acids (PUFAs) were associated with an increased secretion of proinflammatory cytokines. Thus, we measured interleukin 6 (IL-6) and interleukin 10 (IL-10) in cerebrospinal fluid (CSF) of patients with chronic schizophrenia as well as PUFAs of red blood cell (RBC) membranes from the same individuals. A significant and inverse correlation was found between CSF IL-6 (not IL-10) and RBC membrane PUFAs levels in both haloperidol-treated and medication-free patients with schizophrenia. Specifically, such an association was found in the n-6 (18:2, 20:4, and 22:4) and, to a lesser extent, the n-3 fatty acids. Taken together, the present findings suggest that decreased membrane PUFAs may be related to an immune disturbance in schizophrenia, possibly resulting from an increased phospholipase A2 activity mediated through the proinflammatory cytokines. 相似文献
16.
Abstract The fatty acid composition of cultures of Shewanella putrefaciens strain ACAM 342 grown aero-bically and anaerobically at 15°C and 25°C were analysed by capillary gas chromatography. The bacterium was found to produce the polyunsaturated fatty acids (PUFA) 18:2ω3, 18:3ω3 and 20:5ω3 under aerobic and anaerobic conditions at both growth temperatures. This result suggests that the bacterium possesses both the aerobic and anaerobic pathways for unsaturated fatty acid synthesis, where an alternate terminal electron acceptor(s) is utilised in the absence of oxygen. 相似文献
17.
Fang J Kato C Sato T Chan O McKay D 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2004,137(4):1930-461
The biochemistry of piezophilic bacteria is unique in that piezophiles produce polyunsaturated fatty acids (PUFAs). A pertinent question is if piezophilic bacteria synthesize PUFA de novo, through dietary uptake, or both. This study was undertaken to examine the biosynthesis and cellular uptake of PUFAs by piezophilic bacteria. A moderately piezophilic (Shewanella violacea DSS12) and two hyperpiezophilic bacteria (S. benthica DB21MT-2 and Moritella yayanosii DB21MT-5) were grown under 50 MPa (megapascal) and 100 MPa, respectively, in media containing marine broth 2216 supplemented with arachidonic acid (AA, sodium salt) and/or antibiotic cerulenin. There was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7% of total fatty acids) and DB21MT-5 (1.4%), but no uptake was observed in DSS12. When cells were treated with cerulenin, all three strains incorporated AA into cell membranes (13–19%). The biosynthesis of monounsaturated fatty acids was significantly inhibited (10–37%) by the addition of cerulenin, whereas the concentrations of PUFAs increased by 2–4 times. These results suggest that piezophilic bacteria biosynthesize and/or incorporate dietary polyunsaturated fatty acids that are important for their growth and piezoadaptation. The significance of these findings is also discussed in the context of phenotypic classification of piezophiles. 相似文献
18.
Mizushina Y Dairaku I Yanaka N Takeuchi T Ishimaru C Sugawara F Yoshida H Kato N 《Biochimie》2007,89(5):581-590
We screened the inhibitor of mouse inosine 5'-monophosphate dehydrogenase (IMPDH) type II from natural compounds, and found that a fatty acid, linoleic acid (C18:2), inhibited IMPDH activity. In the C18:2 fatty acid derivatives, all trans-configuration (i.e., linoelaidic acid), ester form, alcohol form, and addition of the hydroxyl group of linoleic acid had no effect on inhibitory activity. Therefore, both parts of a carboxylic acid and an alkyl chain containing cis-type double bonds of fatty acid might be essential for inhibition. Among the various carbon atom lengths and double bonds of fatty acids examined, the strongest inhibitor was C20:2-fatty acid, eicosadienoic acid, and 50% inhibition was observed at a concentration of 16.1 microM. Eicosadienoic acid induced the inhibition of IMPDH activity and was competitive with respect to IMP (K(i)=3.1 microM). For inhibitory effect, the C20-fatty acids ranked as follows: C20:2>C20:3>C20:1> C20:4>C20:5, and C20:0 showed no inhibition. The energy-minimized three-dimensional structures of linear-chain C20-fatty acids were calculated, and it was found that a length of 20.7-22.5A and width of 4.7-7.2A in the fatty acid molecular structure was suggested to be important for IMPDH inhibition. Docking simulation of C20-fatty acids and mouse IMPDH type II, which was homology modeled from human IMPDH type II (PDB code: 1NF7), was performed, and the fatty acid could bind to Cys331, which is a amino acid residue of the active site, competitively with IMP. Based on these results, the IMPDH-inhibitory mechanism of fatty acids is discussed. 相似文献
19.
Alison B. Kohan Callee M. Walsh 《Biochemical and biophysical research communications》2009,388(1):117-7
Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as β-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser307 phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids. 相似文献
20.
Omega-3 fatty acids from fish oils and cardiovascular disease 总被引:10,自引:0,他引:10
Fish and fish oils contain the omega-3 fatty acids known as eicosapentaenoic acid (EPA) plus docosahexaenoic acid (DHA). Epidemiological studies have shown an inverse relation between the dietary consumption of fish containing EPA/DHA and mortality from coronary heart disease. These relationships have been substantiated from blood measures of omega-3 fatty acids including DHA as a physiological biomarker for omega-3 fatty acid status. Controlled intervention trials with fish oil supplements enriched in EPA/DHA have shown their potential to reduce mortality in post-myocardial infarction patients with a substantial reduction in the risk of sudden cardiac death. The cardioprotective effects of EPA/DHA are widespread, appear to act independently of blood cholesterol reduction, and are mediated by diverse mechanisms. Their overall effects include anti-arrhythmic, blood triglyceride-lowering, anti-thrombotic, anti-inflammatory, endothelial relaxation, plus others. Current dietary intakes of EPA/DHA in North America and elsewhere are well below those recommended by the American Heart Association for the management of patients with coronary heart disease. (Mol Cell Biochem 263: 217–225, 2004) 相似文献